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Abstract

The simplex method is one of the most important algorithms used to solve linear opti-
mization problems (LO). Its development since the 1950s has been closely connected with
the development of computer hardware and algorithms. While the first versions were
only capable of solving small-scale problems, today’s software occasionally can handle
problems even with millions of decision variables and constraints. However, solution
of large scale optimization models may be problematic due to several reasons. Some
of them can be attributed to the unavoidable use of floating-point arithmetic required
by the solution algorithms. Though considerable progress has been made to alleviate
these problems it is not uncommon that we encounter models that resist to the solution
attempt. Great progress has also been achieved in dealing with models involving various
numerical difficulties, such as scaling, perturbation, anti-degeneration strategies. It is
important that these methods do not significantly slow down the completion of the entire
task. But even the current software is unable to solve all the linear optimization problems
correctly, as there are numerical errors that we cannot handle with traditional number
representation. Existing software can also give poor results, such as cannot solve a prob-
lem due to numerical difficulties or not converging to the optimum. This gave us the
motivation to incorporate automatic features into our software (Pannon Optimizer) that
can detect that the default floating-point number representation cannot solve the given
model, so it is worth switching to more accurate arithmetic. This is a great help to the
user as there is less doubt as to the correctness of the program output. In connection with
this, we developed stable adder and dot-product implementations that do not contain
conditional branching, so their computational overhead will be smaller. Moreover, we
describe the acceleration method of one of the time consuming elementary steps of the
simplex method. When discussing numerical algorithms, we provide information also
on their speed efficiency.



Absztrakt

A szimplex módszer az egyik legfontosabb algoritmus, amelyet a lineáris optimalizálási
problémák (LO) megoldására használnak. Fejlesztése az 1950-es évek óta szorosan össze-
függ a számítógépes hardverek és algoritmusok fejlesztésével. Míg az első verziók csak
kisméretű problémák megoldására voltak képesek, a mai szoftverek alkalmanként képe-
sek kezelni olyan problémákat is, amelyek döntési változók millióiból és korlátozásaiból
állnak. A nagyméretű optimalizálási modellek megoldása azonban több okból is prob-
lematikus lehet. Ezek egy része a lebegőpontos aritmetika elkerülhetetlen használatának
tulajdonítható, amelyet a megoldó algoritmusok megkövetelnek. Bár jelentős előrelépés
történt e problémák enyhítése érdekében, nem ritka, hogy olyan modellekkel találkozunk,
amelyek ellenállnak a megoldási kísérletnek. Nagy előrelépés történt a különféle nu-
merikus nehézségekkel járó modellek kezelése terén is, például skálázás, perturbálás,
degeneráció-ellenes stratégiák terén. Fontos, hogy ezek a módszerek ne lassítsák jelen-
tősen az egész feladat megoldási folyamatát. De még a jelenlegi szoftverek sem képesek
minden lineáris optimalizálási problémát helyesen megoldani, mivel vannak olyan nu-
merikus hibák, amelyeket a hagyományos számábrázolással nem tudunk kezelni. A
meglévő szoftverek gyenge eredményeket is adhatnak, például numerikus nehézségek
miatt nem tudnak megoldani egy problémát, vagy nem konvergálnak az optimumhoz.
Ez adta a motivációt arra, hogy szoftverünkbe (Pannon Optimizer) beépítsünk olyan au-
tomatikus eljárásokat, amelyek észlelhetik, hogy az alapértelmezett lebegőpontos ábrá-
zolás nem tudja megoldani az adott modellt, ezért érdemes átállni a pontosabb számábrá-
zolásra. Ez nagy segítség a felhasználó számára, mivel kevesebb kétség merül fel a pro-
gram kimenetének helyességével kapcsolatban. Ennek kapcsán olyan stabil összeadó és
skalár szorzat implementációkat fejlesztettünk ki, amelyek nem tartalmaznak feltételes
elágazást, így számítási költségük kisebb lesz. Ezenkívül leírjuk a szimplex módszer
egyik időigényes elemi lépésének gyorsítási módszerét. A numerikus algoritmusok tár-
gyalásakor ismertetjük a mérési eredményeinket is.



Abstrakt

Simplexová metóda je jedným z najdôležitejších algoritmov používaných na riešenie
problémov s lineárnou optimalizáciou (LO). Jeho vývoj od 50. rokov 20. storočia bol
úzko spätý s vývojom počítačového hardvéru a algoritmov. Zatial’ čo prvé verzie boli
schopné riešit’ iba problémy malého rozsahu, dnešný softvér občas dokáže zvládnut’
problémy aj s miliónmi rozhodovacích premenných a obmedzení. Riešenie vel’kých op-
timalizačných modelov však môže byt’ problematické z niekol’kých dôvodov. Niektoré z
nich možno pripísat’ nevyhnutnému použitiu aritmetiky s pohyblivou rádovou čiarkou,
ktorú vyžadujú algoritmy riešenia. Napriek tomu, že na zmiernenie týchto problémov
bol urobený značný pokrok, nie je neobvyklé, že sa stretávame s modelmi, ktoré odolá-
vajú pokusu o riešenie. Vel’ký pokrok sa dosiahol aj pri riešení modelov zahŕňajúcich
rôzne numerické t’ažkosti, ako sú škálovanie, poruchy, stratégie proti degenerácii. Je
dôležité, aby tieto metódy výrazne nespomal’ovali dokončenie celej úlohy. Dokonca
ani súčasný softvér nie je schopný správne vyriešit’ všetky problémy s lineárnou opti-
malizáciou, pretože existujú numerické chyby, ktoré si s tradičným zobrazovaním čísel
nevieme rady. Existujúci softvér môže tiež poskytovat’ zlé výsledky, napríklad nemôže
vyriešit’ problém z dôvodu numerických problémov alebo nesúladu s optimom. To nás
motivovalo začlenit’ do nášho softvéru (Pannon Optimizer) automatické funkcie, ktoré
dokážu zistit’, že predvolená reprezentácia čísla s pohyblivou rádovou čiarkou nemôže
vyriešit’ daný model, preto stojí za to prejst’ na presnejšiu aritmetiku. Je to vel’ká pomoc
pre užívatel’a, pretože už nie sú žiadne pochybnosti o správnosti výstupu programu. V
súvislosti s tým sme vyvinuli stabilné implementácie sčitačky a skalárneho súčinu, ktoré
neobsahujú podmienené vetvenie, takže ich výpočtová réžia bude menšia. Okrem toho
popisujeme akceleračnú metódu jedného z časovo náročných elementárnych krokov sim-
plexovej metódy. Pri diskusii o numerických algoritmoch poskytujeme informácie aj o
ich rýchlosti.
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Notations

Linear optimization models

m Number of constraints

n Number of decision variables, dimension of x

x Vector of decision variables

x j Decision variable j

ℓ Vector of lower bounds of variables

u Vector of the upper bounds of variables

c Coefficient vector of the objective function

z Value of objective function

L Vector of the lower bounds of constraints

U Vector of the upper bounds of constraints

ai
j

The jth coefficient in the ith constraint

A Matrix of constraints

χ Set of feasible solutions

Simplex method

y Vector of logical variables

I Identity matrix

b Right hand side of constraints in transformed computational form

B Basis part of A

R Nonbasis part of A

N Set of indices of variables

B Set of indices of basic variables
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R Set of indices of nonbasic variables

U Set of indices of nonbasic variables, at upper bound

xB Vector of basic variables

xR Vector of nonbasic variables

cB Coefficient vector of basic variables

cR Coefficient vector of nonbasic variables

β Vector of values of basic variables

B−1 Inverse of the basis

α j The jth transformed column of matrix A

θ Steplength of a nonbasic variable

w Measure of infeasibility

M Set of indices of basic variables below their lower bound

P Set of indices of basic variables above their upper bound

d j Reduced cost of the jth variable

z Value of updated objective value

η Non-unit column of an elementary transformation matrix

E Elementary transformation matrix

s number of the ETMs

d̂ j Normalized reduced cost of the jth variable

σ j Direction of changing x, when x j changes by 1

h Auxiliary vector

φ Simplex multiplier in phase-1

π Simplex multiplier in phase-2

ρp The pth row of inverse of the basis

ρ̄p The updated pth row of basis inverse

Numerical stability

κ(M) Condition number of the matrix M
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Other symbols

R Set of real numbers

‖v‖2 Euclidean norm of vector v

e j Unit vector

Text formatting

In this dissertation we follow the following text formatting conventions:

• The first occurrences of important keywords are in italics.

• C ++ source codes, source code snippets, program variables, and program outputs
are formatted by typewriter font:

1 #include <iostream >

2
3 int sum(int a, int b) {

4 if (!a) {

5 return b;

6 }

7 return sum((a & b) << 1, a ^ b);

8 }

9
10 int main() {

11 std::cout << "The sum: " << sum(10, 20) << std::endl;

12 return 0;

13 }

The output:

The sum: 30

• The mathematical expressions, formulas, variables, symbols are in mathematical
form: eiπ + 1 = 0



Preface

Over the past 70 years, linear optimization has remained one of the essential tools in
operations research. Its use is critical in proper economic decision-making processes,
so its research results in significant benefits. Its development is closely related to the
development of computer technology, so with more advanced technology we can solve
more problems more efficiently. This supports faster decision-making process.

I have come across a few times a mathematical model (Rump’s matrices, discrete
moment problems, or some industrial models) for which existing solver software (like
GLPK and COIN-OR) gave the result that it is infeasible or unbounded while examining
the models revealed that this is not the case: the software gave a wrong result. The
problem was caused by the numerical instability of the coefficient matrix. This gave me
the motivation to incorporate automatic features into our software (Pannon Optimizer)
that can detect that the default floating-point number representation cannot solve the
given model, so it is worth switching to more accurate arithmetic. This is a great help
to the user as there is less doubt as to the correctness of the program output. Related to
this, I also turned to speed up stable operations: during a professional conversation, a
developer of a well-known software explained to me that they don’t use stable addition
algorithms because they interfere with the CPU pipeline mechanism. The idea of a C-
language implementation of a branchless dot-product came to me at this time, and then
I developed further implementations as well.



Introduction
The simplex method is one of the most important algorithms used to solve linear optimiza-
tion problems. While the first computer implementations in the 1950s were only capable
of solving small-scale problems, today’s software occasionally can handle problems even
with millions of decision variables and constraints. But even though many algorithms
have been added to the original simplex method with which we can handle many numeri-
cal problems, even today’s solver software is not able to solve all the problems. Therefore,
our primary goal was to create a new algorithm that allows the software to detect that it
is working on a numerically too unstable problem and can inform the user accordingly.
To present our work, we discuss the simplex method to the necessary depth in Chapter
1, and we shortly introduce our simplex implementation named Pannon Optimizer. This
method is also forced to use fractional numbers, and processors support floating-point
number representation, and it is best suited for scientific calculations. Since this number
representation is the cause of the numerical problems examined in the dissertation, we
will describe them in Chapter 2. In the later chapters, we will build heavily on these
properties and number representation: To understand the numerical problems described
in the later chapters, it is necessary to know the properties and problems of floating-point
numbers and the IEEE 754 Standard. In Chapter 3, we present the acceleration of the
most time-consuming and numerically critical step of the simplex method. In Chapter 4,
we describe the condition numbers of the matrices and then prove that it is not enough
for our solving software to draw conclusions from the numerical properties of the input
matrix. We then propose a method by which the solving software adapts to the numerical
properties of the problem that has to be solved and, if necessary, checks the numerical
quality of the current inverse of the basis representation. If the checker finds that the
current inverse of the basis is numerically unusable, this indicates that the software can
then switch to a slower but a more reliable number representation. As a result, unlike
the solving software that is used currently, the user does not get false results. Finally,
in Chapter 5, we describe a few low-level, numerically stable vector-vector adder and
dot-product implementations based on Intel’s SIMD instruction set which are much faster
than the simple C++ implementations. We also describe and examine a simplified but
faster version of Orchard-Hays’s classic stable adder. We use measurements to prove that
our own simplified algorithm is faster, and we still get correct result.
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Figure 1: Connections between the chapters



Chapter 1

The simplex method

In this chapter, we introduce the linear programming problems and the simplex method.

1.1 Short history

The history of linear programming began in 1939 [21], when the Soviet Kantorovich

published his method that solved a general linear programming problem [43] He used
this method to optimize military operations during the war. However, his work was
neglected in the Soviet Union, his results only became known in the West in 1959
[16]. Meanwhile, Dantzig independently developed the formulation of the general linear
programming problems in the US Air Force [18] in 1947 and he later published the
simplex method [14]. John von Neumann had conjectured the theorem of duality at a
meeting with Dantzig [18].

It seemed that the simplex method is a polynomial algorithm, but in 1972 Klee and
Minty proved that in specific problems the simplex method is exponential [47]. Khachiyan
published his ellipsoid method in 1979, which was polynomial algorithm [45]. However,
this algorithm was slower in most of the linear programming problems. In 1984 Kar-
markar introduced the interior-point method which was a highly efficient, polynomial
algorithm [44]. Later, in 1985 and 1987 Terlaky published the Criss-Cross algorihm [96],
[97].

1.2 Linear optimization problems

In linear optimization (or linear programming), modelers describe problems with linear
expressions, linear inequalities. The solution to the problem is represented by numerical
values, so we need an n-dimensional vector that contains the decision variables, denoted
by x. Each variable has an individual lower bound and upper bound from the set of {−∞,R}
and {+∞,R} respectively. If the variable satisfies its bounding criterion, then it is a feasible

variable. The n dimensional ℓ vector contains the lower bounds and u consists of upper
bounds. We can say that the variable has no lower / upper bound if the corresponding
bound is −∞ / +∞. Obviously, ℓ j ≤ u j.
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ℓ j ≤ x j ≤ u j, j = 1 . . .n (1.1)

The value we wish to minimize or maximize is the objective function which is the
linear combination of the decision variables. The n dimensional cost vector c contains the
coefficients of the variables in the objective function, so formally the objective function is
the following:

min z =

n∑

j=1

c jx j (1.2)

or we can define a maximization problem:

max z =

n∑

j=1

c jx j (1.3)

But it is known, that there is a simple connection between minimization and maximization
problems:

min z = −max − z (1.4)

Therefore, throughout the rest of this dissertation we can talk about minimization prob-
lems without loss of generality.
If we would like to solve real-life problems, we have to take into consideration certain
restrictions: The problems have constraints too, which are expressed by linear inequalities
constructed from x: For the linear combination of x we can give lower and upper bounds.
Let m denote the number of constrains. We can write the constraints formally as follows:

L1 ≤ x1a1
1 + . . . + xna1

n ≤ U1

...

Li ≤ x1ai
1 + . . . + xnai

n ≤ Ui

...

Lm ≤ x1am
1 + . . . + xnam

n ≤ Um

where the m dimensional vectors L and U contain the lower and upper bounds of the
constraints. The ai

j
is the coefficient of jth variable in ith constraint where 1 ≤ i ≤ m and

1 ≤ j ≤ n. The matrix Am×n contains these coefficients. The linear optimization model is
composed of the variables, the objective function and the constraints:
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min z = cTx (1.5)

s.t. L ≤ Ax ≤ U (1.6)

ℓ ≤ x ≤ u (1.7)

If x satisfies the inequality system (1.6), it is a solution. If x is a solution and satisfies
(1.7), then it is a feasible solution. The χ denotes the set of feasible solutions:

χ = {x : L ≤ Ax ≤ U, ℓ ≤ x ≤ u} (1.8)

The problem has no feasible solution, if and only if χ = ∅. The solution x ∈ χ is optimal,
if: ∀x

′ ∈ χ: cTx ≤ cTx
′
.

1.3 The simplex method

In this section, we introduce the simplex method. First, we describe the computational
form of the linear optimization model as well as the principle of solver algorithm, and
finally, we briefly explain the modules . From a mathematical point of view, there are
two versions of the simplex method: The primal [14] and dual [55]. We notice that Maros

introduced a general dual phase-2 algorithm in 1998 [60], and later in 2003 the general
dual phase-1 [59], which iterate faster to the optimum. In this dissertation we only discuss
the primal method in details.

Previously, we saw the general form of linear optimization problems in (1.5) - (1.7), but
we need to transform this into a simpler but equivalent form. There are two reasons for
this transformation: First, it makes the introduction of the algorithms easier to discuss,
and second, the source code of the software becomes simpler.

Several computational forms exist, and they have a common property: The constraints
are transformed into equality by introducing logical variables. These special variables are
contained by the m dimensional vector y. In some forms, we need to translate the lower
and upper bounds of variables, too. The transformed computational form we will use in
this dissertation is the following:

min z = cTx (1.9)

s.t. Ax + Iy = b (1.10)

type(x j), type(yi) ∈ {0, 1, 2, 3}, 1 ≤ j ≤ n, 1 ≤ i ≤ m (1.11)

In the applied computational form, we allow the following types of variables:
Hereafter, we will use as a coefficient matrix as follows:

A := [A | I]
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Feasibility range Type Reference

y j, x j = 0 0 Fixed variable

0 ≤ y j, x j ≤ u j 1 Bounded variable

0 ≤ y j, x j ≤ +∞ 2 Nonnegative variable

−∞ ≤ y j, x j ≤ +∞ 3 Free variable

Table 1.1: Types of variables

and moreover the

x :=





x

y





vector will contain the variables, and the cost coefficients belonging to the logical variables
are zero:

c :=





c

0





For the simplex method, we partition the A matrix into two sections, the B, basis and
the R submatrix, which contains columns from A that are not in B:

A = [B | R]

For notational simplicity, we need some index sets. Let N denote the index set of the
variables. Each variable is associated with a column of matrix A. We say that when
a column is in the B basis, then the corresponding variable is also in the basis . These
are the basic variables, others are the nonbasic variables. The set B contains the indices of
basic variables, while R contains indices of nonbasic variables. Moreover, setU denotes
the indices of nonbasic variables, which are at their upper bound. From the previous
observation, we can split x into basic variables and nonbasic variables, respectively:

x =





xB

xR





Similarly, we also split c :

c =





cB

cR





We can show that in an optimal solution, the nonbasic variables are at their bounds, and
the values of basic variables are determined by the nonbasic variables as follows:

β = xB = B−1(b − RxR) (1.12)
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We need the following notation: Let α j denote the product of jth matrix column and
basis inverse:

α j = B−1a j (1.13)

Two bases are called neighboring bases when they differ from each other in only one
column. We can move from a basis to a neighboring one by a so-called basis change.
The principle of the simplex method is the following: Determine a starting basis and
search the optimal solution through a finite number of basis changes. The optimality
of a solution can be verified easily; the simplex method guarantees that it is a global
optimum. Usually, when the algorithm starts from an infeasible solution, the so-called
primal phase-1 controls the basis changes: Its task is to find a feasible solution. Maros
introduced a phase-1 algorithm in 1986 [58]. After a feasible solution is found, variables
are kept in feasible ranges by primal phase-2, while searching for an optimal solution. For
the sake of simplicity, we focus on phase-2 in this dissertation.

In each iteration, the simplex algorithm affects the value of a chosen nonbasic variable,
and in many cases, this variable moves into the basis. Let xq be the chosen nonbasic
variable, and θ denotes the steplength of the change in xq. In this case, the basic variables
change as shown by the following formula:

β = β − θαq (1.14)

Since θ affects feasibility, during the computation of θwe have to take into consider-
ation that the solution has to stay feasible.

Now we introduce the major steps of the simplex algorithm. Figure (1.1) shows these
steps and their logical connections.

MPS reader

Most of the linear optimization problems can be found in standardized text files. There
are numerous file formats, and the most common file format is the MPS. Every simplex
implementation has to support the MPS (Mathematical Programming System) format.
The MPS was the first format designed for linear optimization systems at the age of
punched cards, so this caused a very rigid storage method. Figure (1.2) shows a simple
example LO problem and its MPS representation. Notice that the cost coefficients are
multiplied by -1 according to (1.4) because the MPS format describes only maximization
problems. Later on, technical development allowed using other, advanced, and more
sophisticated formats, but there were too many models in MPS, so this legacy format
remained the de-facto standard format of LP models. However, the usage of this format
has declined, because of the wide acceptance of the algebraic modeling languages, like
AMPL [42] and GAMS [24]. The task of the MPS reader is to read these files, detect their
errors, and compute statistics. The result of this module is the raw model, which is stored
in the memory. The following software modules will perform transformation operations
and computations on this raw model.
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Figure 1.1: Flow chart of the simplex method

Presolver

From the mathematical point of view, the presolver is not a necessary module of the simplex
algorithm. The task of the presolver is simplification and improvement of the model.
Since some generator algorithms create many models, the model may be redundant. The
presolver algorithm has to recognize the removable columns and rows in such a way that
the resulting model is equivalent to the original one.

For example, a basic presolver can simplify the LO model introduced formerly in
Figure (1.2); it recognizes that the 3rd row is unnecessary; that is, it defines an upper
bound for the variable x2. The presolver removes the 3rd constraint and modifies the
upper bound of x2, as it can be seen in Figure (1.3). In the example, the coefficient matrix’s
size decreased; therefore, the simplex algorithm can work faster.

After the solver algorithm found an optimal solution, the so-called postsolver (the
pair of presolver) has to insert the removed variables back into the model to represent
the solution for the user by the original model. The first publication about the presolver
was the work of Brearley, Mitra and Williams in 1975 [5], it was followed by Tomlin and
Welch’s article in 1983 [101, 100], Andersen and Andersen in 1995 [3], and Gondzio in 1997
[29]. The last two results apply to interior-point methods.
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max z : 600x1 + 800x2

40x1 + 20x2 ≤ 550
32x1 + 64x2 ≤ 150

48x2 ≤ 120
x1, x2 ≥ 0

NAME demo

ROWS

L c1

L c2

L c3

N z

COLUMNS

x1 c1 40 c2 32

x1 z 600

x2 c1 20 c2 64

x2 c3 48 z 800

RHS

RHS1 c1 550 c2 150

RHS1 c3 120

ENDATA

Figure 1.2: A simple linear optimization problem, and its MPS
representation

Scaler

Like the presolver, the scaler is also an optional module, executed before the simplex
algorithm. There are LO problems, where the variance of the entries of A is too large, so
this can increase the numerical instability of the algorithm. The scaler created to stabilize
the numerically unstable problems; scales the rows and columns of the matrix to decrease
the variance as much as possible. We scaled our example model in a way that is using
powers of 2, to avoid additional numerical errors, using the method that was proposed
by Benichou in [4]; the variance of matrix elements is reduced. Figure (1.4) shows the
result.

Finding the starting basis

As we saw in Figure (1.1), before the iterative part of the algorithm, we need to select
a reasonable starting basis. There are numerous ways to select a starting basis. The
most straightforward way is to select the identity matrix; namely, we select only logical
variables into the basis. This is called a logical basis. The logical basis is simple and easy
to implement, but we can construct bases that are probably closer to an optimal solution,
so researchers have designed many starting basis finder algorithms, with different ad-
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max z : 600x1 + 800x2

40x1 + 20x2 ≤ 550
32x1 + 64x2 ≤ 150

48x2 ≤ 120
x1, x2 ≥ 0

=⇒
max z : 600x1 + 800x2

40x1 + 20x2 ≤ 550
32x1 + 64x2 ≤ 150

x1 ≥ 0, 0 ≤ x2 ≤ 2.5

Figure 1.3: The simplified model after the presolver

max z : 600x1 + 800x2

40x1 + 20x2 ≤ 550
32x1 + 64x2 ≤ 150

x1 ≥ 0, 0 ≤ x2 ≤ 2.5

=⇒
max z : 600x1 + 800x2

1.25x1 + 0.625x2 ≤ 17.1875
0.5x1 + x2 ≤ 2.34375

x1 ≥ 0, 0 ≤ x2 ≤ 2.5

Figure 1.4: The scaled model

vantages; minimizing the infeasibility, degeneracy, and so on. The algorithm also creates
the logical variables at least here, and converts ≤ and ≥ constraints into = equations, as
Figure (1.5) shows. Finally, this module initializes the values of nonbasic variables into
one of their bound.

max z: 600x1 + 800x2

y1 + 1.25x1 + 0.625x2 = 17.1875

y2 + 0.5x1 + x2 = 2.34375

x1 ≥ 0, 0 ≤ x2 ≤ 2.5, y1, y2 ≥ 0

Figure 1.5: The model with logical variables. In this example, y1

and y2 are the initial basic variables.

The simplex algorithm executes the following modules in every iteration, so their
implementations have to be very efficient.

Feasibility test

The values of the nonbasic variables determine the values of basic variables, as (1.12)
shows. The solver has to check whether these values violate their feasibility range or
not; that is, whether the solution is feasible or not. When the solution is infeasible, this
module prepares special data structures for phase-1 algorithms. In theory, we skip this
step in phase-2, but practical experiences show that we have to perform a feasibility test in
both phases: Numerical errors can occur and lead to infeasible solutions, pushing back
the solver to phase-1.

LetM and P denote the index sets of infeasible basic positions, where i ∈ M, if the
ith basic variable is below its lower bound, and i ∈ P if the ith basic variable is above its
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upper bound. We need a phase-1 objective function, which summarizes these feasibility
range violations:

w =
∑

i∈M
βi −

∑

i∈P
(βi − vi)

When w < 0, then the actual solution is infeasible, because there is a basic variable,
which is below its lower bound or above its upper bound. The task of pricing is to choose
a nonbasic variable for increasing the value of w. We can calculate a phase-1 reduced cost

for each nonbasic variable:
d j =

∑

i∈M
αi

j −
∑

i∈P
αi

j (1.15)

The meaning of this reduced cost is the following: When xq is increased by t, butM
and P still remain unchanged, then the value of w changes by −tdq: ∆w = −tdq. When
t is negative, pricing has to choose xq in such a way that dq < 0, but when t is positive,
we need a positive dq. We summarized the choosing rules for different cases in table
(1.2): When the pricing cannot find an appropriate nonbasic variable and w < 0, then the

Type Value d j Improving displacement Remark

0 x j = 0 Irrelevant 0 Never enters to basis

1 x j = 0 < 0 +

1 x j = u j > 0 − j ∈ U
2 x j = 0 < 0 +

3 x j = 0 , 0 +/−

Table 1.2: Rules of finding an improving variable in phase-1

algorithm halts, the problem has no solution.

Pricing

In the primal simplex, the pricing selects a nonbasic variable xk candidate to enter the
basis; we say that it is an incoming variable. With moving the incoming variable, the
objective function has to improve. We compute a phase-2 reduced cost for each j ∈ R
nonbasic variable based on the following formula:

d j = c j − cT
BB−1a j (1.16)

The Formula (1.16) comes from these:

z = cT
BxB + cT

RxR (1.17)

xB = B−1(b −RxR) (1.18)
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If we mix these formulas and rearrange them, we get the following:

z = cT
BB−1b + (cT

R − cT
BB−1R)xR (1.19)

Since according to (1.19) z = cTx, , if xk(k ∈ R) changes by θ, then

z(θ) = z + θdk (1.20)

As (1.20) shows, the reduced costs determine the direction of the objective function’s
change. Therefore, we can introduce the so-called optimality conditions; if and only if
there are no more improving variables (see Table (1.3), the current solution is optimal.

Type Value d j Feasible displacement Remark

0 x j = 0 Irrelevant t = 0

1 x j = 0 < 0 0 ≤ t ≤ uk

1 x j = u j > 0 −uk ≤ t ≤ 0 j ∈ U
2 x j = 0 < 0 t ≥ 0

3 x j = 0 , 0 −∞ ≤ t ≤ ∞

Table 1.3: Rules of finding an improving variable in phase-2, with
a minimization objective function. Obviously, the maximization
problems have opposite rules.

In our example, the starting basis consists of the logical variables:

B = (y1, y2)⇒ B =





1 0

0 1




, cB =





0

0





R = (x1, x2)⇒ R =





1.25 0.625

0.5 1




, cR =





600

800





The right-hand side vector is constant:

b =





17.1875

2.34375





The nonbasic variables are in their bound:

xR =





x1 = 0

x2 = 0





Based on Formula (1.12), we can compute the basic variables:
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β = xB = B−1(b − RxR) =





y1 = 17.1875

y2 = 2.34375





Obviously, the initial z value is 0.
The variables satisfy their bound criterion, so this is a feasible solution; we are in

phase-2, we can calculate the phase-2 reduced costs based on Formula (1.16):

dT = cT
R − cT

BB−1R =





dx1 = 600

dx2 = 800





As Table (1.3) shows (recall that we have a maximization problem now), both nonbasic
variables are good candidates to enter the basis. There are numerous variants of pricing
strategies, the simplest one is the Dantzig pricing [14]: We choose the variable to have
the largest reduced cost. However, there are other advanced strategies as well. The most
common methods are the normalized pricing strategies; Harris introduced the Devex in
1973 [30], and Goldfarb and Reid developed the Steepest-edge in 1977 [28].

In our case, we simply choose x2 to enter the basis, its reduced cost is 800, and let
denote q = 2 the incoming variable’s index. As the corresponding

αq = B−1aq =





0.625

1




,

we have to choose a basic variable, which leaves the basis.

Ratio test

The pricing selects a variable to enter the basis. The ratio test has to determine the outgoing
basic variable in a way that the feasibility ranges are maintained in phase-2, or decrease
feasibility violations in phase-1. But sometimes it happens that the basis change is not
possible. In this case, we perform a bound flip operation; change the incoming variable
from its lower bound to the upper one, or vice versa.

Recall Formula (1.14), and keep in mind that the simplex algorithm has to modify the
basic variables in a way that they still have to stay inside their feasible range:

li ≤ βi −Θαi
q ≤ ui

where li and ui are the lower and upper bounds of the ith basic variable. We have
several such inequalities, but only one Θ that we are looking for; we have to solve these
inequalities to obtain different possible Θ values, and finally we choose their minimum.
If we select this value properly, this displacement moves one basic variable into its bound,
and that variable leaves the basis.
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In our example there are 2 basic variables, the y1 and y2, and they have only a lower
bound, so there are 2 inequalities:

0 ≤ β1 −Θ1α
1
q → 0 ≤ 17.1875 −Θ10.625→ Θ1 = 27.5

0 ≤ β2 −Θ2α
2
q → 0 ≤ 2.34375 −Θ2 → Θ2 = 2.34375

The Θ is the Θ2, and the outgoing variable is the y2. We say that, this variable is the
pivot element, and p = 2.

Basis change

This module performs a basis change: It removes the outgoing variable from the basis,
and inserts the incoming variable. Finally, it updates a few data structures, for example,
the values of basic variables. When it is necessary, this module performs the reinversion

of the basis. For higher efficiency, we can integrate the feasibility test in this module.
As saw in the previous subsections, in the example problem, the incoming variable

is the x2, and y2 leaves the basis. So this step modifies the list of basic and nonbasic
variables, and updates other data structures:

B = (y1, x2)⇒ B =





1 0.625

0 1




, cB =





0

800





R = (x1, y2)⇒ R =





1.25 0

0.5 1




, cR =





600

0





We update the basic variables according to Formula (1.14), and the basic variable at
the pivot position changed by Θ :

β = xB =





y1 = 15.72266

x1 = 0→ 2.34375





The objective function’s value grows from zero: z = z+Θdq = 2.34375 · 800 = 1875. As
one can see, the algorithm has to make logical decisions in several places, namely based
on reduced costs, α, and β vectors. In Chapter 4, we will see that if we make a significant
numerical error in any of its calculations, the algorithm will continue the calculation in
the wrong direction. This can result in cycling or an erroneous result.

Finishing the example

Fortunately, the variables are in their feasible range, so we can compute the new reduced
costs:
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dT =

[

600 0
]

−
[

0 800
]





1 0.625

0 1





−1 



1.25 0

0.5 1




=

[

200 −800
]

The only one improving variable is the x1, which reduced cost is 200, so q = 1. The

associated α1 = B−1a1 =





1 0.625

0 1





−1 


1.25

0.5




=





0.9375

0.5




.

In the ratio test 2 inequalities have to be solved:

0 ≤ 15.72266 −Θ10.9375→ Θ1 = 16.77083

0 ≤ 2.34375 −Θ20.5→ Θ2 = 4.6875

Notice that x2 has an upper bound, but the corresponding αi value is positive, so this
variable moves towards its lower bound. The current Θ = 4.6875, and p = 2. The new
basic variables after the basis change:

β =





11.32813

4.6875





The objective function grows again:

z = 1875 + 4.6875 ∗ 200 = 2812.5

The new basis, and the other data structures changes as follows:

B = (y1, x1)⇒ B =





1 1.25

0 0.5




, cB =





0

600





R = (x2, y2)⇒ R =





0.625 0

1 1




, cR =





800

0





The new reduced costs:

dT =

[

800 0
]

−
[

0 600
]





1 1.25

0 0.5





−1 



0.625 0

1 1




=

[

−400 −1200
]

Finally, as the reduced costs are -400 and -1200, there are no more improving variables,
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an optimal solution has been found.

1.4 Product form of the inverse

During the solution algorithm the vector-matrix and matrix-vector products with the B−1

matrix are widely used:
α = B−1a (1.21)

πT = hTB−1 (1.22)

We can update B−1 in each iteration, and perform the multiplications, but keeping
B−1 up to date is very time consuming. The so-called Product Form of Inverse (PFI)
representation (PFI) of the basis developed by Dantzig and Orchard-Hays is a proper
way to handle this problem [17, 61, 15]. We notice that, later on Markowitz published the
LU decomposition method [57], but we omit that in this dissertation. The principle of PFI
is that B−1 can be represented by the product of elementary transformation matrices (ETMs):
We store the ETMs in a list, and at basis change the algorithm appends a new ETM to
the end of list. An ETM can be determined quickly. When the algorithm has to compute
(1.21), we use the FTRAN algorithm, and for (1.22) we need the BTRAN algorithm.

Let B be the original basis matrix, and Bα is the neighbor of B, the bases differ from
each other in the pth column, because the algorithm changed the pth column of B by an
a vector.

B =
[

b1, . . . ,bp−1,bp,bp+1, . . . ,bm

]

⇓

Bα =
[

b1, . . . ,bp−1, a,bp+1, . . . ,bm

]

For constructing the new ETM, we will need the v = B−1a vector, which can be
computed by the ratio test. Computing the η vector from v is as follows:

η =

[

−v1

vp
, . . . ,−

vp−1

vp
,

1
vp
−

vp+1

vp
, . . . ,−vm

vp

]

The E ETM is the following:

E =





1 η1

. . .
...

ηp

...
. . .

ηm 1
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By using E matrix, B−1
α can be computed with the following formula:

B−1
α = EB−1

After the ith basis change the basis inverse is the following:

B−1
i = EiEi−1 . . .E1,

where
B−1

0 = I

For FTRAN and BTRAN it is sufficient to store the η vectors and the corresponding p

indices from ETMs.

FTRAN

The FTRAN (Forward Transformation) operation implements the (1.21) formula. Suppose
that, the actual basis is represented by product of s ETMs. We know that

α = B−1a = EsEs−1 . . .E1a (1.23)

α0 = a

αi = Eiαi−1, i = 1, . . . , s

αs = α

The α = Ea can be performed by the following:

α = Ea =





1 η1

. . .
...

ηp

...
. . .

ηm 1









a1

...

ap

...

am





=





a1 + η
1ap

...

ηpap

...

am + η
map





Notice that, when ap = 0, then the we can omit the related ETM from (1.23).
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BTRAN

We use the BTRAN (Backward Transformation) for the (1.22) formula. The inverse of the
basis is represented by s ETMs. We know that

αT = aTB−1 = aTEsEs−1 . . .E1 (1.24)

αT
0 = aT

αT
i = α

T
i−1Es−i+1, i = 1, . . . , s

αT
s = α

T

The αT = aTE can be performed as follows:

αT = aTE =

[

a1, . . . , ap, . . . , am

]





1 η1

. . .
...

ηp

...
. . .

ηm 1





αT = aTE =

[

a1, . . . ,
∑m

i=1 aiη
i, . . . , am

]

1.5 Computation of the reduced costs

In this section we describe how to compute the reduced costs in primal phase-1 and
phase-2 efficiently.

1.5.1 Reduced costs in phase-1

According to (1.15), the definition of reduced costs in phase-1 is the following:

d j =
∑

i∈M
αi

j −
∑

i∈P
αi

j

It can be seen that in order to compute reduced cost d j we need the vector α j = B−1a j.
However, we have to compute more reduced costs, so it is not practical to compute all α j

vectors directly, because the algorithm will be very slow. We can solve this problem with
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introducing an auxiliary vector h ∈ {−1, 0, 1}m, which has the following components:

hi =





1, if i ∈ M

−1, if i ∈ P

0, otherwise

The reduced cost of x j becomes:

d j = hTα j = hTB−1a j

Note that hTB−1 is the same for each nonbasic variable, thus we can introduce the phase-1

simplex multiplier:
φT = hTB−1 (1.25)

d j = φ
Ta j

First, we have to compute the simplex multiplier with a BTRAN operation. In the second
step, the dot products are used to obtain the reduced costs, so the computation will be
faster than computing α j vectors first.

To improve the speed of computation, it is recommended to use this approach:

dT
R = φ

TR (1.26)

If we store R rowwise, we can obtain reduced costs by multiplying the rows of R with
the corresponding entries of φ and summarize the multiplied rows. If φ has only a few
nonzero components then this is a very fast operation.

1.5.2 Reduced costs in phase-2

As saw in (1.16), the definition of reduced costs in phase-2 is the following:

d j = c j − cT
BB−1a j

We can introduce the phase-2 simplex multiplier:

πT = cT
BB−1 (1.27)

d j = c j − πTa j (1.28)

This simplex multiplier has the same advantages like the phase-1 simplex multiplier
Before we compute the reduced costs, we perform a BTRAN operation to obtain πT. After
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Figure 1.6: Computing phase-1 reduced cost vector using simplex
multiplier rowwise matrix representation

this we obtain the reduced costs using dot products and one subtraction. It is known
that when we replace the pth basis column with another one, we can update the simplex
multiplier (π̄) using the following method [99]:

ρ̄p = eT
p B̄−1

π̄T = πT + dqρ̄
p, (1.29)

where dq is the reduced cost of the previous incoming variable. The vector ep contains
only one nonzero component, so using an enhanced BTRAN algorithm for computing ρ̄p

can accelerate this update. We can update the reduced costs using the following method:

d̄ j = d j − dqρ̄
pa j

Usually ρ̄p contains fewer nonzero components than πT, so it is practical to compute
reduced costs using this formula:

d̄T
R = dT

R − dqρ̄
pR (1.30)

Similarly to the phase-1, if R is stored rowwise, computing reduced costs can be a fast
operation using vector additions and multiplication. In the beginning of the third chapter,
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we describe the details of the update of phase-1 reduced costs.

1.6 The dual simplex method

In this section, we briefly describe the second phase dual simplex algorithm. It can be used
when there is at least one infeasible basic variable, but the optimality conditions meet.
We notice that the literature describes the theory of duality, but it is unnecessary for this
discussion.

Algorithmically, this method differs from primal phase-2 in the choosing of incoming
and outgoing variables. While the primal selects an incoming variable first, the dual
pricing chooses an outgoing basic variable and in the dual ratio test, we select the incoming
variable. Let us consider the following LO problem:

min z = cTx (1.31)

s.t. Ax = b (1.32)

0 ≤ x (1.33)

As we know, xB = B−1b. If this vector is feasible, that is xB ≥ 0, the solution is optimal,
and the algorithm terminates. Otherwise, we select an xp < 0 from xB, p is the index of the
pivot row. In the second step, we have to select the incoming variable carefully; We have
to keep the optimality of the current solution, namely d ≥ 0. Recall the formula (1.30),
and let denote αp the row p of the transformed matrix:

αp = ρpR

We have to choose an incoming column such a way that the corresponding dq reduced
cost has to reach the 0 value ; the incoming variable will be basic, and the reduced costs of
basic variables are zero. So the incoming q index is determined by the following formula:

θ =
dq

α
p
q

= max





d j

α
p

j

: αp

j
< 0, j ∈ R





In the basis change, the new reduced cost on the incoming index is −θ.

1.7 Pannon Optimizer

The simplex method described in the dissertation and the various innovations and accel-
erations were implemented in the software called Pannon Optimizer. It is an open source
software written in C ++, with a modular structure, developed by colleagues from the
Operations Research Laboratory of the University of Pannonia. The primary purpose of
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the software is to make it easy to implement and test a variety of research ideas. The
software is based on the book by Professor István Maros [61].

The main component of Pannon Optimizer is a library that can be linked into software
for various purposes, such as a command line program. The upper layer of the library
is the Solver framework, which controls the steps and strategies of the solving process.
This includes the heuristic error detection procedure described in Chapter 4. It includes
a modeling subsystem that handles the matrix, vectors, and other data needed for the
algorithm, as well as some special algorithms used only in the simplex method. The
Chapter 3 accelerated, row-wise BTRAN algorithm is part of this module. These are
served by the Linear algebraic kernel, which contains various linear algebraic operations.
The accelerated procedures described in Chapter 5 are included. In addition to the Linear
algebraic kernel, there is a collection of other procedures in the Utilities module. The
lower layers of the Pannon Optimizer are connected to GLIBC, the operating system,
and some of its components are directly connected to the hardware. The structure of the
system is shown in the Figure 1.7.

Pannon Optimizer is currently able to solve NETLIB and other model collections at
an acceptable speed and is currently under development. The current stable version is
available at:

https://sourceforge.net/projects/pannonoptimizer/

Figure 1.7: Pannon Optimizer architecture



Chapter 2

Floating-point numbers

In this chapter, the definitions and the essential properties of the floating-point numbers
will be discussed. Most of the simplex implementations, including the topic of this
dissertation, use this number system. One of the keys to implementing a stable software
is using floating-point arithmetic appropriately.

2.1 A brief preview

There is a long list of representing real numbers with different advantages and disadvan-
tages. The simplest systems are the fixed-point numbers, where a fixed number of bits are
used for the integer and fractional part. The main advantage is that it is straightforward
to implement basic mathematical operations using integer numbers. The fixed-point
numbers can be very efficient in low-performance environments [87], where hardware
support for floating-point numbers is not available. They were also very useful tools
even the videogame industry, for instance, John Carmack used them in his revolutionary
graphics engines of Wolfenstein 3D [80] and Doom [79]. However, fixed-point numbers
have their limitations, namely the range of the representable numbers is fixed and narrow.
There are a lot of interesting ideas to represent numbers, such as logarithmic [46] [39] and
semi-logarithmic [68] systems, which can be used in digital signal processing to improve
the dynamic range. Some applications can also use the rational numbers well [49]. The
list is long, we can mention continued fractions [50] [105], possibly infinite strings of ra-
tional numbers [66], level-index numbers [9] [71], fixed-slash and floating-slash numbers
[65], and 2-adic numbers [106].

Strictly speaking, the floating-point numbers can be represented in the following way:

(−1)s ×m0.m1m2 . . .mp−1 × βe (2.1)

Where the meaning of the letters is as follows:

• s ∈ {0, 1}: The sign of the number.

• p: The precision of the number, that is the number of used digits, and p ≥ 2.
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• mi, 0 ≤ i ≤ p − 1: The digits of the number, where mi < β.

• β: The radix (or base) of the floating-point number, where β ≥ 2

• e: The exponent of the number.

Throughout history, different radix values were used, like the radix-60 number system
at the Babylonians [48]. The β = 10 value is surprisingly widely used, not only in daily
human calculations, but it is used in financial calculations and in pocket calculators also.
In 2001, 55% of numerical data was stored on commercial databases in decimal numbers
[7]. Nowadays this is a very actively researched area [11, 12, 13, 22, 2, 103, 102, 104, 56,
108].

The first described electro-mechanical implementation of Babbage’s Analytical Engine
was done by Leonardo Torres y Quevedo in 1914 [76]. Later, Konrad Zuse built the Z3
computer in 1941, which used a radix-2 floating-point number system [8].

In 1985, the IEEE 754-1985 Standard of Binary Floating-Point Arithmetic was released
[35], which was extended in 1987 (IEEE 854-1987 Standard Radix Independent Floating-
Point Arithmetic) [36] for radix-2 and radix-10 number systems. In the current disserta-
tion, we focus only on the radix-2 number systems.

2.2 The floating-point format

The floating-point format design aimed at creating a widely available and efficient number
system. Designers have realized that engineering and other applications require a specific
precision only; for example, we don’t need to know the Earth-Sun distance in millimeters,
but we want to describe the weight of an atom. There are five important desirable
properties of this number-system in an efficient simplex method implementation:

• Speed: The simplex method has to perform mathematical operations very quickly
to produce the result as soon as possible.

• Accuracy: The wrong result of an operation can lead the simplex method in the
wrong direction.

• Range: The simplex method has to handle large and small numbers as well.

• Portability or platform-independency: The simplex method has to work on different
computer architectures, so the current hardware has to support the floating-point
numbers.

• Easy to use and implement: The number system has to be as simple as possible
because it would be more challenging to design a stable simplex method implemen-
tation.
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Representation s M m β p e Remark

123625 · 10−3 0 123625 - 10 6 -3 Decimal

1.23625 · 102 0 - 1.23625 10 6 2
Decimal

Normalized

1111011101(2) · 2−3 0 1111011101(2) - 2 10 -3 Binary

1.111011101(2) · 26 0 - 1.111011101(2) 2 10 6
Binary

Normalized

Table 2.1: Different representations of the number x = 123.625.

Now, we complete the definition of floating-point numbers showed in (2.1):

x = (−1)s ×M × βe−p+1 (2.2)

Here M is an integer number, which is less than or equal to βp − 1. This value is called
the integral significand of the x. The digits of M are the significant digits. We have to note
that, the significand is often called mantissa in literature. The mantissa is the fractional
part of the logarithm of a number, and as Goldberg showed his great work [27], the term
significand was created by Forsythe and Moler in 1967 [26].

Moreover, the e exponent has bounds like emin ≤ e ≤ emax.
The other representation of a floating-point number is the following:

x = (−1)s ·m · βe (2.3)

The notation of m is the new term of this definition, where

m = |M| · β1−p, (2.4)

that is, m is the normal significand, or significand of the representation of x. The consequence
of this definition is that there is only one digit before the radix point, and p− 1 digit after,
and 0 ≤ m < β.

For example, the number of x = 123.625 has many different possible representations,
as Table (2.1) shows.

The infinitely precise significand of x, with the radix β is the following:

x

β⌊logβ |x|⌋
(2.5)

As the examples in Table (2.1) show, there are several representations of a floating-
point number. However, it is advised to use unique representations. If we have a
representation, where e ≥ emin, it is called a normalized representation. As we will see later,
this has an additional pleasing property in radix-2 systems.

There are two variants, if we talk about normalized floating-point numbers: There are
normal and subnormal or denormal numbers.
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• Normal numbers: In this variant 1 ≤ |m| < β, or otherwise βp−1 ≤ |M| < βp. The radix
point is after the first digit of the significand, which is 1 in radix-2. Notice that if x is
a normalized floating point number, its significand is equal to its infinitely precise
significand.

• Subnormal numbers: In this variant e = emin, and |m| < 1, or |M| ≤ βp−1 − 1. The
leading digit of the significand is always zero in radix-2.

The so-called hidden bit (or leading bit, implicit bit) convention says that we do not store
the first bit in the case of radix-2. This method can improve the accuracy if there is a
limited number of bits to represent the significand. Thus, the normal numbers can be
written as

1.m1m2 . . .mp−1,

while subnormal number:
0.m1m2 . . .mp−1,

The digits in .m1m2 . . .mp−1 consist of the trailing significand, or the fraction. After this we
can define some additional terms:

• βemin : The smallest positive normal number.

• Ω = (β − β1−p) · βemax : The largest finite floating-point number.

• α = βemin−p+1: The smallest positive subnormal number, and of course, the smallest
positive floating-point number.

The set of the normal range are built by the numbers whose absolute value is between
βemin and Ω. The set of the subnormal range consists of the numbers whose magnitude is
less than βemin. A simple example to demonstrate these values is the β = 2, p = 6, emin =

−10, emax = 10 system:

• The most significant bit of the smallest positive number is 1, and the fraction part is
zero: 1.00000(2). The radix point is shifted by emin, so the number is: 0.0000000001(2) =

2−10 = 9.765625 · 10−4.

• Every digit of the largest finite number is 1: 1.11111(2), so the largest number is:
1.11111(2) · 210 = 2016.

• The least significant bit of the smallest subnormal positive number is 1, and the
leading bits are 0: 0.00001(2), so the smallest subnormal positive number is: 0.00001(2)·
2−10 = 3.0517578125 · 10−5.

2.2.1 Rounding

Because of the significand’s limited digits, not every number is representable in a floating-
point format. The Algorithm (2.1) converts a decimal fractional number to binary, and it
prints the series of digits to the output.
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Algorithm 2.1 Convert decimal fractional number to binary

Input: x in decimal, where 0 ≤ x < 1
1: while x > 0 do
2: x := x × 2
3: if x ≥ 1 then
4: print "1"
5: x := x − 1
6: else
7: print "0"
8: end
9: end

Let’s convert the 0.110 to binary. Figure (2.1) shows the progress and the output of the
algorithm. It is clear that after the 6th iteration, the algorithm gets stuck in an infinite loop.
It means that we cannot store the exact value of 0.110 in a 2-radix floating-point number,
we have to use its approximation. But there are numbers in which binary representation
consists of a finite number of digits, but the used floating-point format has fewer digits.
In both cases, a rounded number is stored.

Iteration x Output

1 0.1 0

2 0.2 0

3 0.4 0

4 0.8 0

5 1.6→ 0.6 1

6 1.2→ 0.2 1

Figure 2.1: Convert 0.110 to binary.

There are four types of rounding strategies specified by the IEEE 754 standard:

• RD: Round toward −∞ (or round downward). The stored number is the greatest
floating-point number, which is less than the original value.

• RU: Round toward+∞ (or round upward). The stored number is the lowest floating-
point number, which is greater than the original value.

• RZ: Round toward zero. If x < 0, then round toward +∞, and if x > 0, round toward
−∞.

• RN: Round to nearest. The result is the closest representable floating-point number
to x. If x is exactly halfway between two floating-point numbers, then RN(x) is the



CHAPTER 2. FLOATING-POINT NUMBERS 29

Figure 2.2: Different rounding modes.

number which integral significand is even. This is the so-called round to nearest
even strategy.

If the rounding mode is unspecified, the rounded value of x is denoted by ◦(x). In this
case, the relative error of rounding:

ǫ(x) =
∣
∣
∣
∣
∣

x − ◦(x)
x

∣
∣
∣
∣
∣

The relative error of normal numbers in RN mode is less than or equal to 1
2β

1−p, and in
other rounding modes it is less than β1−p. In subnormal case, the relative error can be
close to 1. It is clear that the round-to-nearest strategy can result in less errors than the
directed strategies. In the this dissertation we will use the round-to-nearest strategy.

The rounding can create additional numerical problems. The two basic mathematical
operations (addition and multiplication) have the following widely known properties:

• Commutativity: a + b = b + a, a × b = b × a, ∀a, b.

• Associativity: a + (b + c) = (a + b) + c, a × (b × c) = (a × b) × c, ∀a, b, c.

• Distributivity: a × (b + c) = a × b + a × c, ∀a, b, c.

The commutativity property holds on to the floating-point arithmetic, but we lose the
other two properties. Sometimes ◦(◦(a + b) + c) drastically different from ◦(a + ◦(b + c)),
as Figure (2.3) shows by code lines 10 and 11. If there is no overflow or underflow, the
multiplications have much lower error rate. Namely:





1 − 1
2β

1−p

1 + 1
2β

1−p





2

≤ ◦(◦(a × b) × c)
◦(a × ◦(b × c))

≤




1 + 1
2β

1−p

1 − 1
2β

1−p





2

In radix-2 systems, if p = 24, then the lower and upper bounds are ≈ 0.99999976 and
1.000000238, if p = 54, they are 0.999999999999999778 and 1.000000000000000222. More-
over, the distributivity is also problematic as the addition operations, as Figure (2.3)
shows. It is clear that if the order of addition operations is not carefully established, the
results can be completely wrong.
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1 #include <iostream >

2
3 int main() {

4 float a = 123322443;

5 float b = -123322453;

6 float c = 10;

7 float d = (a + b) + c;

8 float e = a + (b + c);

9 std::cout.precision(10);

10 std::cout << "d = " << d << std::endl;

11 std::cout << "e = " << e << std::endl;

12 c = 1212442.04553;

13 d = (a * b) * c;

14 e = a * (b * c);

15 std::cout << "d = " << d << std::endl;

16 std::cout << "e = " << e << std::endl;

17 std::cout << "diff: " << (d-e) << std::endl;

18 e = (a + b) * c;

19 d = a * c + b * c;

20 std::cout << "d = " << d << std::endl;

21 std::cout << "e = " << e << std::endl;

22 std::cout << "diff: " << (d - e) << std::endl;

23 return 0;

24 }

The output:

d = -6

e = -8

d = -1.843933565e+22

e = -1.84393334e+22

diff: -2.251799814e+15

d = -16777216

e = -19399072

diff: 2621856

Figure 2.3: A short demo code in C++ to demonstrate the lack of
associativity and distributivity. Compiled with gcc version 9.1.0.
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Cancellation

It may happen that an arithmetic operation does not cause a new error. But if the operands
have an error, we can amplify that. Sterbenz [92] proved that in a radix-β floating-point
number system, where there are subnormal numbers, and if

y

2
≤ x ≤ 2y

for all x and y floating-point numbers, x − y is exactly representable. Figure (2.4) shows
a C++ code example which demonstrates the cancellation. In the code, the a2 and b
variables are close enough to each other, so because of Sterbenz’s lemma, d is the exact
difference of a2 and b. This can be seen in the output: The digits of d after the 0.5 part are
the same as the fractional digits of a2 (the last digit of a2 is rounded during the printing).
However, as saw earlier, we cannot store the value of 0.1 without a rounding error; the
error of c is around 1.490116 × 10−8. However, the value of a2 = RN(a + c) is different
from a + c, the relative error of a2 is around 2.44 × 10−9. This is still not a big error, but
if we subtract b from a2 (which is an exact operation due to the Sterbenz lemma), the
relative error of d increases: The relative error is 4.073 × 10−5.
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1 #include <iostream >

2
3 int main() {

4 float a = 1000;

5 float b = 999.5;

6 float c = 0.1;

7 float a2 = a + c;

8 float d = a2 - b;

9 std::cout.precision(15);

10 std::cout << "c = " << c << std::endl;

11 std::cout << "a2 = " << a2 << std::endl;

12 std::cout << "d = " << d << std::endl;

13 std::cout << "relative error = "

14 << ((0.6f - d) / 0.6) << std::endl;

15 return 0;

16 }

The output:

c = 0.100000001490116

a2 = 1000.09997558594

d = 0.5999755859375

relative error = 4.07298405965169e-05

Figure 2.4: A short demo code in C++ to demonstrate the cancella-
tion error. Compiled with gcc version 9.1.0.

Name p
Exponent

bits Max finite Min normal Min subnormal

Half 11 5 65504 6.1035 × 10−5 5.9605 × 10−8

Single 24 8 ≈ 3.4028 × 1038 ≈ 1.1755 × 10−38 ≈ 1.4013 × 10−45

Double 53 11 ≈ 1.7977 × 10308 ≈ 2.225 × 10−308 ≈ 4.9407 × 10−324

Double extended 64 15 ≈ 1.1897 × 104932 ≈ 3.3621 × 10−4932 ≈ 3.6452 × 10−4951

Quadruple 113 15 ≈ 1.1897 × 104932 ≈ 3.3621 × 10−4932 ≈ 3.6452 × 10−4951

Table 2.2: The main IEEE 754-2008 radix-2 floating-point formats.
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Let’s see how the float type stores 0.6 and the value of d:

• 0.6: 0
︸︷︷︸

signal

01111110
︸     ︷︷     ︸

exponent

00110011001100110011010
︸                             ︷︷                             ︸

significand

• d: 0
︸︷︷︸

signal

01111110
︸     ︷︷     ︸

exponent

00110011001100000000000
︸                             ︷︷                             ︸

significand

As we can see, the cancellation error "cancelled" the last 9 bits of d. Sometimes this error
is also called catastrophic cancellation.

2.3 The IEEE 754 Standard

In this section, a small part of the IEEE 754 Standard is introduced. We focus on the number
formats used in this dissertation, see Table (2.2). Notice that this is the newest revision of
the standard, named IEEE 754-2008. The standard also defines decimal formats, but they
are irrelevant for us; there are optional formats (for example single extended) and one
that is currently not supported by any hardware (256-bit format). Every format in Table
(2.2) except for the double extended type uses the hidden leading bit convention. The 32
bit single and 64 bit double formats are supported by most of the hardware. We use half
format later in this dissertation for demonstration purposes.

The 80-bit format is mostly used by the Intel’s FPU register stack. The FPU has 8 80-bit
wide registers, each register can store 1 floating-point value. Of course, this hardware can
store 32 and 64-bit formats also, this is controlled by a special control register. Software
developers typically use this feature in order to perform temporary calculations inside
the FPU with higher precision.

Special values

The IEEE 754-2008 standard specifies some special values. These are the zero, infinity the
and not-a-number symbols. Now let n = (−1)s ×m× βe denote the floating-point number
that we would like to store. The exponents of the finite numbers are biased: The real
exponent e of n is incremented by a fixed value such a way that if the most significand
bit can show that |n| > β or not. Let E the stored, biased version of e, and M the integer
number created by the bits of significand. However, if the E consists of only 1’s, n is an
infinity or not-a-number symbol. So there are the following cases:

• E > 0 and E has at least one 0 bit: n is a normal number.

• E = 0: In this case the number can be a zero, or a subnormal number. If M = 0, then
|n| = 0. Notice that, the s bit can be 1 or 0, so we can represent the -0 symbol also. If
M > 0, then n is a subnormal number, and e = E + emin.

• E contains only 1’s: This is not a finite number, the symbol depends on the M:
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– M = 0: The n is −/ +∞, depending on s.

– M > 0: The n is a not-a-number (NaN) symbol. This symbol can represent
uninitialized numbers, or the result of an invalid operation (for example

√
−1).

Some examples with 16-bit:

• 0
︸︷︷︸

sign: positive

10010
︸︷︷︸

exponent: 18 - 15
︸︷︷︸

bias

= 3

1000100110
︸        ︷︷        ︸

significand: 1024
︸︷︷︸

hidden bit

+ 550 = 1574

= 1574
27 = 12.296875

• 0
︸︷︷︸

sign: positive

00000
︸︷︷︸

exponent: 0 - 15
︸︷︷︸

bias

= -15, subnormal

0010101000
︸        ︷︷        ︸

significand: 0.1640625 (hidden bit = 0)

= 0.1640625 × 2−14 = 1.0013580322265625× 10−5

• 1
︸︷︷︸

sign: negative

11111
︸︷︷︸

special symbol

0000000000
︸        ︷︷        ︸

significand = 0

= −∞

• 0
︸︷︷︸

sign: positive

11111
︸︷︷︸

special symbol

1000000000
︸        ︷︷        ︸

significand > 0

= NaN

Double rounding

The CPU rounds every number which is not a p-length floating-point number. For
example, let us consider this bit pattern, divided to sections:

1.101000
︸    ︷︷    ︸

Section A

100
︸︷︷︸

Section B

0 00100
︸︷︷︸

Section C

The Section A and B are totally 10-bit length, then there is a 0, and a third section, where
is at least one 1. Now image what happens, if we would like to round this number to
10 digits. We have to look at the 11th bit, that is 0, so the number is rounded down, the
result is:

1.101000
︸    ︷︷    ︸

Section A

100
︸︷︷︸

Section B

In the next step, round this number to 6 digits: The next, 7th bit is 1, and this bit is
followed by only zeros. It means that this number is exactly at the halfway of the two
possible results, so the round to nearest even strategy is applied: We have to round to the
number that has 0 at the 6th bit, so the result is the following:

1.101000
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Now go back to the original number, and round it to 6 digits. The next, 7th digit is 1, and
there is at least additional 1 after this bit, so we round up, the result is:

1.101001

We have got 2 different results. Although this is an example with short bit patterns, this
can happen in real life software also. The traditional 32 bit Intel CPU’s used the FPU to
perform floating-point calculations. As we mentioned earlier, this FPU has 80 bit wide
registers, which can store 32, 64 and 80-bit floating-point numbers. On default settings,
on the 32-bit architectures the compiled code uses these registers: The program loads
the 64-bit double type variables into the FPU and converts them to an 80-bit format.
The calculations are performed with this, more precise format. In this code (see lines 9
and 14) additions and multiplications are executed. The CPU rounds the results of each
elementary operations, and stores this rounded 80-bit wide value in the FPU’s registers.
When the 9th line is executed, or the for loop is finished, the CPU stores the result back
to the variable c, but this is a 64-bit variable; so a new rounding is necessary. Of course,
both compiled programs are 64-bit binaries, but in the first case, the compiler option
-mfpmath=387 forces the compiler to use the FPU.

Let us investigate the code of Figure (2.5). This C++ code is compiled in two ways: In
both cases, we build an X86 64-bit Linux executable binary file, so the executables work
on 64-bit mode. The first version is compiled with the -mfpmath=387 option, the second
is not. As it can be seen, the output of the two versions is different.

Without that option, the compiler does the compiling without the FPU because the
64-bit Intel architectures have the new SIMD registers which are more flexible than the
old-fashioned FPU. In these new registers, we can store 32 or 64-bit floating-point numbers
only. So if the code uses these registers, the temporary results of the calculation are always
rounded to 64-bit, and there is no more additional rounding at the end.
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1 #include <iostream >

2 #include <cstdlib >

3
4 int main() {

5 srand(0);

6 std::cout.precision(23);

7 double a = 9223372036854775808.0;

8 double b = 1024.25;

9 double c = a + b;

10 std::cout << c << std::endl;

11 for (int i = 0; i < 10000; i++) {

12 a = rand() % 10000000000;

13 b = rand() % 10000000000;

14 c += a * b;

15 }

16 std::cout << c << std::endl;

17 return 0;

18 }

The output, with compile option -mfpmath=387:

9223372036854775808

11360200579421323657216

The output, with default options (sse, 64 bit):

9223372036854777856

11360200579421325754368

Figure 2.5: A short demo code in C++ to demonstrate the double
rounding. Compiled with gcc version 9.1.0.



Chapter 3

Improvement techniques of pricing

3.1 Updating the phase-1 simplex multiplier

As we saw in the previous chapter, the phase-2 simplex multiplier update formula (1.29)
has been known since 1974 [99]. We will show how one can update the phase-1 sim-
plex multiplier below. As we saw in (1.25) this simplex multiplier can be obtained by
multiplying the vector h and the actual B−1 basis inverse:

φT = hTB−1

Now we move from basis B to B̄, and the vector h changes to h̄. Let:

∆h = h̄ − h. (3.1)

We suppose that ∆h contains much less nonzero components than h̄, so we expect that
with ∆h we can obtain the new simplex multiplier faster.

Determine the value of φ̄T using φT, ∆h and B̄−1:

φ̄
T
= h̄TB̄−1 = (h + ∆h)TB̄−1 = hTB̄−1 + ∆hTB̄−1 (3.2)

We can compute the vector-matrix product ∆hTB̄−1 quickly, because ∆h has few nonzero
components. However, our expectation is that h̄ does not contain more nonzero com-
ponents than h, so computing hTB̄−1 can be slower than the operation φ̄T

= h̄TB̄−1.
Consequently, we need an other way to compute hTB̄−1.

If we rearrange (1.25), we obtain that

φTB = hT

Let be φ̂ the vector, where hTB̄−1 = (φ + φ̂)T equality holds. Rearrange this formula for
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hT and obtain φ̂:
(φ + φ̂)TB̄ = hT,

(φ + φ̂)TB̄ = φTB

φTB̄ + φ̂
T
B̄ = φTB

φ̂
T
B̄ = φTB − φTB̄

φ̂
T
B̄ = φT(B − B̄)

φ̂
T
= φT(B − B̄)B̄−1 (3.3)

Finally, the updated simplex multiplier, if h changes by ∆h, based on (3.2), (3.1), and (3.3):

φ̄
T
= φT + (φT(B − B̄) + ∆hT)B̄−1. (3.4)

The matrices B and B̄ differ from each other in the pth column, so B− B̄ is a matrix, where
every entry is zero, expect the pth column. Thus in practice, to compute φT(B − B̄) we
need a vector subtraction and a dot product. Similarly to the phase-2 reduced costs, the
phase-1 reduced costs can be updated using these observations efficiently. Denote the
change in the phase-1 simplex multiplier with ∆φT:

∆φT = (φT(B − B̄) + ∆hT)B̄−1.

In this case the phase-1 reduced costs can be computed as follows: We know that

dT
R = φ

TR,

therefore
d̄T

R = φ
TR + ∆φTR = dT

R + ∆φ
TR (3.5)

Before computing the simplex multiplier, it has to be verified whether vector φT(B −
B̄) + ∆hT has less nonzeros than h̄ or not, because if h̄ has more nonzeros, then the usage
of (3.5) is preferred.

The computation of φT(B − B̄) can be implemented by using three successive loops
with appropriate vector representations. Since the coefficient matrix contains very few
nonzeros, only these values are stored: Vectors are stored as (idx, v) pairs, where idx gives
the index of value v (v , 0) in the vector. This is the so-called sparse vector representation
technique. Column and row vectors of B are stored this way as shown in Figure (3.1). It
can slow down the algorithm if a single element of the vector has to be obtained, because
this needs a search of complexity O(n). However, the pricing module uses only nonzeros
of the necessary vectors, so it is sufficient to go through the list of (idx, v) pairs only.
This technique makes the program faster, because it doesn’t have to complete operations
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B =





5 4

2

1 2

1 3





≡

b1 b2 b3 b4

‖ ‖ ‖ ‖
idx v

1 5

4 1

idx v

3 1

idx v

2 2

4 3

idx v

1 4

3 2

Figure 3.1: Ab example for column-wise matrix representation

where one of the values is zero. But the simplex multiplierφ is stored in direct form with
its zero elements, since the algorithm reads components of φ randomly.

Usually, sparse representation does not ensure the ordering of (idx, v) pairs by idx,
because operations on the vectors can modify the order of the elements. Maintaining the
right order needs too much computational power. However, the simplex method changes
matrix B by replacing its columns, but the elements in these vectors are unchanged. Since
these elements do not vary, sorting (idx, v) pairs by idx in the initial phase makes sense. The
question is which sorting algorithm is the most suitable? In different situations different
methods are preferred. When there are few pairs, using selection sort is proposed. This
algorithm has O(n2) complexity, where n is the number of elements. For more elements,
a counting sort is the obvious choice, because the complexity is O(n + k), where k is the
range of elements. The counting sort can be simplified, because each index idx in the
pairs is unique. Choosing the appropriate pair causes that the ordering of each vector
in the coefficient matrix can be very time consuming, i.e. length of sorting time can be
comparable with the total execution time of the simplex. However, choosing the right
sorting algorithm based on a simple criterion, running time of sorting is negligible. Let n

be the number of nonzeros in a vector, and r the difference between the largest nonzero
index and the lowest nonzero index. Then the criterion for choosing sorting algorithm is
the following:

n2 ≤ 4n + 2r :=





true: selection sort

false: counting sort

Figure (3.2) shows an example for sorting times, where r = 100.
We know that B and B̄ differ from each other in one column vector; denote the vectors

with b and b̄ respectively. This fact can be utilized to compute φT(B− B̄). Moreover, as it
was mentioned above, b and b̄ are stored in sparse form, and the pairs (idx, v) are stored in
ascending order. Finally, φ is in direct form, i.e. each component of φ is reachable directly.
The algorithm computing B and B̄ utilizes these facts. It is similar to the merge sort: Each
nonzeros of b and b̄ have to be visited. Let (idx, v)k

b
denote the kth index-value pair in

vector b, and similarly, (idx, v)l
b̄

the lth pair in vector b̄. The algorithm has to compute the
following formula:

∑n
i=1 φi(bi − b̄i). At the beginning, l and k are 1, and some iterations are

executed. The index k refers to the pair (idx1, v1), and l refers to (idx2, v2). In each iteration
the referred indices idx1 and idx2 are compared. Three cases can be distinguished:
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Figure 3.2: Execution times of different sorting algorithms

• idx1 = idx2 In this case the algorithm refers the (idx1, v1)k
b

and (idx2, v2)l
b̄

pairs, so then
the value φidx1

(v1 − v2) is computed.

• idx1 < idx2 In this case the algorithm refers the (idx1, v1)k
b

and (idx2, v2)l
b̄

pairs. This
means that there is no such a (idx2, v2)l

b̄
, where idx1 = idx2, so the algorithm computes

the value φidx1
(v1 − 0) = φidx1

v1.

• idx1 > idx2 In this case the algorithm refers the (idx1, v1)k
b

and (idx2, v2)l
b̄

pairs. This
means that there is no such a (idx1, v1)k

b
, where idx1 = idx2, so the algorithm computes

the value φidx2
(0 − v2) = −φidx1

v2.

After these simple operations, k and l are increased by 1. Algorithm (3.1) shows the
pseudo code of the algorithm, where c(a) denotes the number of nonzeros in vector a, and
the operator nz(a, i) gives the pair (idx, v)i

a from vector a.
As computing (3.4) needs a BTRAN operation, it is useful to have a specific BTRAN

implementation, exploiting sparsity of φT(B − B̄) + ∆hT.

3.2 Column-wise BTRAN algorithm

It is shown in the previous sections that the pricing module heavily depends on the
BTRAN operation, so implementing an efficient BTRAN algorithm is a fundamental in a
simplex solver. In this section two implementations are introduced, and their efficiency
will be investigated.
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Algorithm 3.1 Algorithm for computing φT(B − B̄)ep

Input: b, b̄ and φ vectors
Output: s scalar

1: s := 0
2: k := 1
3: l := 1
4: while k < c(b) és l < c(b̄) do
5: Let (idx1, v1)k

b
:= nz(b, k)

6: Let (idx2, v2)l
b̄

:= nz(b̄, l)
7: if idx1 = idx2 then
8: s := s + φidx1 (v1 − v2)
9: k := k + 1
10: l := l + 1
11: else if idx1 < idx2 then
12: s := s + φidx1 v1

13: k := k + 1
14: else
15: s := s − φidx2 v2

16: l := l + 1
17: end
18: end
19: while k < c(b) do
20: Let (idx, v)k

b
:= nz(b, k)

21: s := s + φidxv
22: k := k + 1
23: end
24: while l < c(b̄) do
25: Let (idx, v)l

b̄
:= nz(b̄, l)

26: s := s − φidxv
27: l := l + 1
28: end
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Recall the formula of BTRAN (1.24):

αT = aTB−1 = aTEsEs−1 . . .E1

Based on the above formula a simple algorithm can be used: To computeα theηvectors
from the ETMs and the corresponding p indices. Let us use the following notations:

• s: The number of ETMs representing B−1

• ηi: The η vector of the ith ETM

• pi: The column index of ηi in the ith ETM

• a: The vector to be transformed, an m dimensional vector

Let’s suppose that vector a is given in dense form.. The advantage of this storage
method is that the complexity of obtaining an element of the vector is O(1). The vector
needs more memory in this way, but in this situation this is acceptable. The vectors ηi are
given in sparse form, i.e. the (idx, v)k

ηi
pairs are stored, where 1 ≤ k ≤ c(ηi).

During BTRAN, dot products of the vectors ηi and a are computed, and the result is
substituted into the pth

i
position of vector a, as it was shown in Algorithms (3.2) and (3.3).

Algorithm 3.2 BTRAN algorithm using column-wise η representation

Input: a
Output: α

1: for i := s to 1
2: d := 0
3: for each η

j

i
, 0:

4: d := d + a jη
j

i

5: end
6: api

:= d
7: end
8: α := a

Analysis of the column-wise BTRAN algorithm

The execution time of algorithm (3.2) depends on the number of η vectors, and the
number of nonzeros in these vectors. The disadvantage of this algorithm is that a result of
multiplication a jη

j

i
(line 4) is often zero. In this case d does not change, thus the algorithm

performs too many unnecessary multiplications. The second disadvantage is that the
execution time is independent from the number of nonzeros in the input vector a. Figure
(3.3) shows an example: There is a step, where the vector remains unchanged. A BTRAN
implementation is free from these two disadvantages, so it can improve the efficiency of
the pricing algorithm.
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Figure 3.3: Example for a column-wise BTRAN implementation
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Figure 3.4: The η vectors of example (3.3) using row-wise represen-
tation

We investigated several test problems. The number of a jη
j

i
products with nonzero

results were counted for each dot product in a BTRAN. Also, the distribution of these
counters were examined. Figures (3.5) and (3.6) show two examples, it can be seen that
the typical number of nonzero results in a dot product of a BTRAN is usually very low.

3.3 Row-wise BTRAN algorithm

A more efficient BTRAN implementation can be achieved using an alternative method
for storing the η vectors. Recall that only the nonzeros of these vectors and positions
of nonzeros in the vectors are stored, and the number of these vectors is s. The vectors
η and a have m components. Introduce an array called Lη, which contains references
to m different lists. Each list contains (idx, v) pairs as follows: The list j contains the η j

i

values from vector ηi, where η j

i
, 0. When these lists are constructed, the descending

order of these pairs has to be maintained by indices. Fortunately, it is easy to fulfill this
requirement: Creating a new ETM means that a new η vector has to be appended to the
list of η vectors, i.e. the nonzero elements of the new vectors are inserted in to the front
of the lists. The insertion of a new element has O(1) complexity. Obviously, the nonzeros
of the ηs vector are at the beginning of the lists and the values of η1 are at the end of the
lists, as Figure (3.4) shows.

In the first step, the BTRAN that uses this new data structure collects the values and
indices of nonzeros from the input vector a. If a j , 0, then the algorithm will need the first
element of the linked list Lη[ j]. This information was collected by using an other s length
array named La, which stores linked lists. The linked list La[ j] contains such pointers,
which refers to the elements of linked lists stored by array Lη: When a j , 0, then the
algorithm examines, which element of the current ηi does the first element of the list Lη[ j]
belongs to. Namely, the lists of the array La represents that η components that have to be
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Figure 3.5: Distribution of nonzero products in STOCFOR2. The
number of rows is 2156

Figure 3.6: Distribution of nonzero products in TRUSS. The number
of rows is 999
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Figure 3.7: An example for the relationship of Lη and La arrays

multiplied with the nonzeros of a. The algorithm will maintain the processed elements
of the Lη lists. In the second step, a pointer is inserted in to the list La[i], which refers to
the first element of the list Lη[ j]. Figure (3.7) shows an example for this data structure:
The figure shows an example input vector a, where a2 = 2, a3 = 1 and a6 = 5. There are
four η vectors, so at first we have to multiply a and η4. The η4 has four nonzero elements,
but we only have to use the η3

4 and η6
4, because a3η

3
4 , 0, a6η

6
4 , 0 and any other products

are zero. Therefore, we have to insert pointers to η3
4 and η6

4 into the list La.
From this data structure it can be read with which vector ηi and a have to be multiplied:

The algorithm chooses the last element of the array La, which index denoted by idx. Now
the list La[idx] shows which elements of ηidx have to be multiplied with the corresponding
elements of the vector a. This ensures that the products will be nonzeros, so the algorithm
does not perform unnecessary multiplications.

Denote pivotIndex the value of pidx. The dot product gives the new value of apivotIndex,
and the algorithm decreases idx by 1, i.e. it chooses the previous list of La. There are three
cases when apivotIndex will be updated:

• The value of apivotIndex was zero, and it remains zero, or it was nonzero, and remains
nonzero also. In this case, extra administration steps are unnecessary.

• If the result is not zero, but the apivotIndex was zero before, the algorithm have to find
the first ηpivotIndex

j
element of Lη[pivotIndex], where j is the utmost but less than idx,

and it inserts its pointer into the La[ j]. Finding this element can be perform in
O(log2) time, using an appropriate linked list data structure. Figure (3.9) shows this
situation: The a4 increases from zero to 4.5, i.e. gets a new nonzero. The current idx
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Figure 3.8: Extracting elements from the linked list La[idx]

is 3. We have to look for an η4
j

in Lη[4], where j < idx. The algorithm finds the η4
1 = 2

element, so the algorithm inserts the pointer of the η4
1 to La[1].

• The result of a dot product can be zero. In this case the algorithm removes that
pointer from La, which refers an element of Lη that belongs to the linked list
pivotIndex. This pointer can be obtained by a search algorithm, which complex-
ity is O(m). However, this problem can be solved using redundancy: The array Ld

contains the corresponding pointer from La to each nonzero element of a. This array
ensures that finding above pointer has O(1) complexity.

After each multiplication the elements of La[idx] will be removed or moved into an
other linked list, as Figure (3.8) shows. If a pointer refers to an η j

i
in Lη which has a next

element, then the algorithm adds the pointer of this next element to the corresponding La

list. If the pointer was the last one in the Lη list, it will be erased.

Aspects of implementation considerations

In this section we introduce a few implementation techniques that improve the perfor-
mance of the row-wise BTRAN.

The lists of the array Lη are implemented as arrays. Each array has a variable named
size that is equal to the number of stored elements, and an other variable named capacity
shows the capacity of the array. The size should never exceed the capacity. If the capacity
is greater than the size, it means that there is place for further elements in the array. When
these variables are equal, then we allocate a greater array. In certain iterations the simplex
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Figure 3.9: A new element was added to vector a so La also gets a
new element

Figure 3.10: The second element of a changes, but La remains the
same
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Algorithm 3.3 Pseudo code of the row-wise BTRAN algorithm

Input: a
Output: α
Remark: s: number of the η vectors
Initialization

1: idx := s
2: for each a j , 0:
3: if Lη[ j] is not empty then
4: (i, v) := first element of Lη[ j]
5: inserting a pointer that refers (i, v) to La[i]
6: end
7: end

Dot products
8: while idx > 0
9: d := 0
10: for each (i, v) pointed by La[idx]
11: Let Lη[ j] the linked list that includes (i, v)
12: d := d + va j

13: if next(i, v) exits then
14: Let (i′, v′) := next(i, v)
15: A pointer that refers to (i′, v′) has been inserted into La[i′]
16: end
17: Delete (i, v)
18: end
19: pivotIndex := pidx

20: if apivotIndex = 0 and d , 0 then
21: if (i, v) exits in Lη[pivotIndex], where i < idx then
22: insert pointer of (i, v) into La[i]
23: end
24: end
25: if apivotIndex , 0 and d = 0 then
26: Delete from La the pointer that refers such a (i, v),
27: that is in Lη[pivotIndex]
28: end
29: apivotIndex := d
30: idx := idx − 1
31: end
32: α := a
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Figure 3.11: Each data structure of the row-wise BTRAN algorithm

algorithm drops the collected ETMs, and substitutes them with less but equivalent ETMs.
We call this operation reinversion. The reason of reinversion is the improvement of
numerical stability, and the large number of ETMs has a negative effect on the execution
time of FTRAN and BTRAN. Thus at reinversion we flush every lists of Lη, before filling
them with new data. Using simple arrays for the lists, we can reset the variable size to
zero, i.e. we perform a fast logical deletion only, and the new elements will overwrite
the old ones. The other advantage of this method is that in the first simplex iterations the
capacities of the arrays grow to the necessary size, and later the likelihood of the array
reallocation will be extremely low. Moreover, getting the next element of an element in
the list needs only one operation. Finally, this approach enables binary search in the lists.

However, we have to use real linked lists in La, because sometimes the algorithm
removes one element of a linked list. Using array instead of linked list requires moving the
elements forward after the removed one, but this solution has O(n) complexity. Removing
an element from the linked list has O(1) complexity. In C/C++, we use memory allocation
and memory release operations for appending and removing elements in linked lists.
However, too many repetitions of these memory operations bring down the efficiency of
the algorithm. In our implementation we omit memory releasing when the algorithm
deletes an element from a list: We store this element in a storage array. When the algorithm
requires memory for a new element, we choose an element from the storage array. When
this array is empty, we use the real memory allocation operation. As we know how many
list elements will be used during the algorithm, we can utilize this information to make
the algorithm more efficient: At most the length of the input vector a, so we can prepare
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Figure 3.12: Implementation of the Lη lists

the pool of the linked list elements in the initialization phase. This method eliminates the
overhead of memory management routines from the algorithm.

When we have a pair (idx, v) from Lη, we have to know, in which list Lη[i] contains
this pair. An additional redundancy can give this information: We can add a row index
to this pair. The final data structure of the efficient implementation is showed by Figure
(3.11).

3.4 Test results

The runtime of the row-wise BTRAN and column-wise BTRAN algorithms was tested
on different LO problems. The result is shown in Appendix A. Of the 100 test problems,
significant acceleration was observed in 64 cases. Our experience shows that the row-
wise BTRAN is strong with a higher reinversion number, this value was 500 during the
tests. If the reinversion number is 100, it is preferable to use a column-wise BTRAN.
This is because the column-wise BTRAN algorithm is simpler, and this simpler program
code is faster if there are fewer η vectors in the inverse. In contrast, a row-wise BTRAN
handles more η vectors better, as it recognizes when a vector does not need to be taken
into account. Furthermore, it can be observed that for smaller problems it is worth using
the simpler algorithm as there are few η vectors there.

3.5 Major results and summary of accomplishments

One of the inverse of the basis representations used by the simplex method is the product
form of the inverse, an important and extremely time-consuming procedure of its is
the BTRAN (Backward Transformation) algorithm. An accelerated row-wise BTRAN
algorithm with less addition and multiplication has been developed that significantly
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reduces runtime for large problems.

Related conference presentation

• M. I. Smidla József. “Sorfolytonos szorzat alakú bázis inverz reprezentáció a primál
szimplex módszerben”. In: XXX. Magyar Operációkutatási Konferencia (Bala-
tonőszöd, Magyarország). 2013



Chapter 4

Numerical stability

Today’s simplex solvers can effectively solve large, somewhat unstable problems. How-
ever, there are LO problems that, although their optimal solution exists, the solver soft-
ware still produce a false result. For example, both GLPK and COIN-OR open source
software gives bad output for certain tasks (for example Rump’s matrix and Hilbert ma-
trix problems), because they are unable to recognize that they are working on numerically
difficult problems. At the end of this chapter, we present a few examples of LO problems
with which we compared the outputs of our own solver and these software. The reason
for the difficulty is the numerical instability of these problems. In this chapter we describe
the problems of numerical instability and then we present our solution.

In the first section, we present the condition number describing how stable a matrix is.
We then show why it is not enough to calculate the condition number for A and, based on
this information, we decide to use a slower but more stable method of solving. Finally, we
describe a method for effectively detecting that the simplex method uses a numerically
unstable basis.

It is important to note that this is a heuristic algorithm that we have designed to give a
false positive result with very little probability for stable problems, rather a false negative
result is typical.

4.1 The condition number

The condition number is a value that describes how a small change in the input of a problem
affects the solution. The higher this value, the greater the change. There are matrices
that have such a high number of condition numbers that even small numerical errors
occurring during the computation can result in huge computational errors.

For the condition number, we need the definition of the vector and matrix norm.

Vector and matrix norm

The ‖ · ‖ : Rn → R function is called norm, if
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1. ‖x‖ ≥ 0 for ∀x ∈ Rn, and ‖x‖ = 0 if and only if x = 0

2. ‖αx‖ = |α|‖x‖ for ∀α ∈ R, x ∈ Rn

3. ‖x + y‖ ≤ ‖x‖ + ‖y‖ for ∀x, y ∈ Rn

Below we enumerate a few widely used vector norms.

• p-norn:

‖x‖p = p

√√
n∑

i=1

|xi|p

• l1 norm or Taxicab geometry:

‖x‖1 =
n∑

i=1

|xi|

• l∞ norm or Maximum norm:

‖x‖∞ = max(|x1|, . . . |xn|) = lim
p→∞
‖x‖p

• 2-norm or Euclidean norm:

‖x‖p =

√√
n∑

i=1

x2
i

Notice that the p-norm is the generalization of the l1, l∞ and 2-norms. The definition of
the induced matrix norm on a matrix A ∈ Rn×m is the following:

‖A‖ ≡ sup
x,0

‖Ax‖
‖x‖ , x ∈ R

m

That is, the matrix norm determines how much a matrix-vector multiplication can increase
the vector norm in case of a given matrix. The matrix norm has the following properties:

‖A‖ ≥ 0,∀A ∈ Rn×m, and ‖A‖ = 0 if and only if A = 0 (4.1a)

‖αA‖ = ‖α‖ × ‖A‖,∀α ∈ R,A ∈ Rn×m (4.1b)

‖A + B‖ ≤ ‖A‖ + ‖B‖,∀A,B ∈ Rn×m (4.1c)

‖AB‖ ≤ ‖A‖ × ‖B‖ (4.1d)

‖Ax‖ ≤ ‖A‖ × ‖x‖ (4.1e)

The most common matrix norms are the following: Below we enumerate a few widely
used matrix norms.
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• p-norm:

‖A‖p = p

√√
m∑

j=1

n∑

i=1

|ai
j
|p

• l1 norm or Taxicab geometry:

‖A‖1 = max
1≤ j≤n

m∑

i=1

|ai j| (4.2)

• l∞ norm or Maximum norm:

‖A‖∞ = max
1≤i≤m

n∑

i=1

|ai j| (4.3)

It is known that the ‖ · ‖α and ‖ · ‖β matrix norms are equivalent for each arbitrary α and
β, that is, for the (‖ · ‖α, ‖ · ‖β) pair, there is a pair of positive real numbers l, L, such that:

l‖A‖α ≤ ‖A‖β ≤ L‖A‖α,∀A ∈ Rn×m (4.4)

Consider the following equation:

Ax = b (4.5)

Let us call δb, and δx the errors of b, and x. If these errors are taken into account, (4.5) is
modified as follows:

A(x + δx) = b + δb (4.6)

Subtract the equation (4.5) from (4.6) and we get:

Aδx = δb (4.7)

It follows from the equations (4.7) and (4.1e) that:

‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖‖δb‖

Moreover, we know that
0 < ‖b‖ = ‖Ax‖ <≤ ‖A‖‖x‖

Consequently:
‖δx‖
‖x‖ ≤

‖A−1‖‖δb‖
‖x‖ ≤ ‖A

−1‖‖δb‖
‖b‖/‖A‖ = ‖A

−1‖‖A‖‖δb‖‖b‖
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So the relative error of the x solution depends on the relative error of the right side
of (4.5). How sensitive the vector x is to an error in b is determined by the condition
number:

κ(M) = ‖M−1‖‖M‖ (4.8)

For a complete row-ranked, non-square matrix, the condition number:

κ(M) = ‖M†‖‖M‖, (4.9)

where M† is the so-called pseudo inverse of complete sequence matrices:

M† =MT(MMT)−1 (4.10)

If we want to prepare our solver software for handling large condition number ma-
trices, it is not enough to determine the condition number of the input matrix and decide
which number representation to use. This is proven by the following example.

Let be M = [I|O + ǫI], where 0 < ǫ, Oi, j = 1, and O, I ∈ Rn×n, and M ∈ Rn×2n, n > 1. By

this lim
ǫ→0

κ(M)
κ(O + ǫI)

= 0.

Proof for norms ‖ · ‖1:
If a matrix is composed of two types of values, one in the main diagonal and the other

in the other, the two norms mentioned above are the same. In the following, the norm
refers to these two norms.

At first, compute the value of κ(O + ǫI):

κ(O + ǫI) = ‖O + ǫI‖‖(O + ǫI)−1‖

Taking into account the equations (4.2) and (4.3):

‖O + ǫI‖ = n + ǫ.

The elements of the matrix (O + ǫI)−1 can take a total of two values a, b, where a denotes
the elements of the principal diagonal and b denotes the other items. We know that the
product of O + ǫI and the inverse matrix gives a unit matrix. So the values of a and b can
be determined using a simple equation system:

1 = a(1 + ǫ) + (n − 1)b

0 = b(1 + ǫ) + a + (n − 2)b

Solving this equation system:

a =
n + ǫ − 1
ǫ(n + ǫ)
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b = − 1
ǫ(n + ǫ)

Based on these ‖(O + ǫI)−1‖ = a + (n − 1)|b| = n + ǫ − 1
ǫ(n + ǫ)

+
n − 1
ǫ(n + ǫ)

=
2n + ǫ − 2
ǫ(n + ǫ)

. By this

lim
ǫ→0
‖O + ǫI‖‖(O + ǫI)−1‖ = lim

ǫ→0

[

(n + ǫ)(
2n + ǫ − 2
ǫ(n + ǫ)

)
]

= lim
ǫ→0

2n2 + nǫ − 2n + 2nǫ + ǫ2 − 2ǫ
ǫ(n + ǫ)

=

lim
ǫ→0

2n2 − 2n + ǫ(3n + ǫ − 2)
ǫ(n + ǫ)

= lim
ǫ→0

2n2 − 2n

ǫ(n + ǫ)
+ lim
ǫ→0

ǫ(3n + ǫ − 2)
ǫ(n + ǫ)

=

lim
ǫ→0

2n2 − 2n

ǫ(n + ǫ)
+ lim
ǫ→0

3n + ǫ − 2
n + ǫ

=
2n2 − 2n

limǫ→0 ǫ(n + ǫ)
+

limǫ→0 3n + ǫ − 2
limǫ→0 n + ǫ

= ∞ + 3n − 2
n
= ∞

Thus, it appears that the matrix O + ǫI is a poorly conditioned matrix, even if epsilon

is small enough.
Now determine the value of κ(M) = ‖[I|O+ǫ∗ I]‖‖[(I|O+ǫ∗ I])†‖. To do this, determine

the inverse of (I|O + ǫ ∗ I])†.

(I|O + ǫ ∗ I])† = [I|O + ǫ ∗ I]T([I|O + ǫ ∗ I][I|O + ǫ ∗ I]T)−1

Based on previous findings [I|O+ ǫ ∗ I][I|O+ ǫ ∗ I]T = I+ (O+ ǫI)(O+ ǫI)T = I+OOT +

ǫOI + ǫIO + ǫ2I = I + nO + 2ǫO + ǫ2I = I(1 + ǫ2) + (n + 2ǫ)O
So the matrix I(1+ ǫ2)+ (n+ 2ǫ)O consists of elements where the elements of the main

diagonal are 1+ǫ2+n+2ǫ and the other elements are n+2ǫ. The inverse of this matrix can
be obtained by a system of equations. For the sake of simplicity, let ǫ̂ = 1 + ǫ2, c = n + 2ǫ,
and d = c + ǫ̂:

1 = a(c + ǫ̂) + c(n − 1)b

0 = b(c + ǫ̂) + ac + c(n − 2)b

Solving this for a and b results in the following:

a =
c(n − 1) + ǫ̂
ǫ̂(cn + ǫ̂)

=
c(n − 1) + (1 + ǫ2)

(1 + ǫ2)(cn + (1 + ǫ2))

b = − c

ǫ̂(cn + ǫ̂)
= − c

(1 + ǫ2)(cn + (1 + ǫ2))

We already know the elements of matrix ((I|O + ǫ ∗ I])T(I|O+ ǫ ∗ I]))−1, so we can write
the norm of (I|O + ǫ ∗ I])†:
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∥
∥
∥
∥
∥
∥
∥
∥





I

O + ǫI




((I|O + ǫ ∗ I])T(I|O + ǫ ∗ I]))−1

∥
∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥
∥





((I|O + ǫ ∗ I])T(I|O + ǫ ∗ I]))−1

(O + ǫI)((I|O + ǫ ∗ I])T(I|O + ǫ ∗ I]))−1‖





∥
∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥









a b . . . b

b a . . . b

...
. . .
...

b b . . . a









1 + ǫ . . . 1
...

. . .
...

1 . . . 1 + ǫ





×





a b . . . b

b a . . . b

...
. . .
...

b b . . . a









∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

First determine the norm ‖ · ‖1. The latter matrix consists of 2n rows and n columns.
Each column contains the same elements, only in a different order, so the norm is the same
as the sum of the absolute values of the elements in any column. Take the first column,
here the absolute sum of the first n elements is equal to a+ (n− 1)|b|. The absolute sum of
the lower n elements is |a(1 + ǫ) + (n − 1)b + (n − 1)(a + (1 + ǫ)b + (n − 2)b)|. Since a and b

always have ǫ in some subtotal, and n, a > 0, a lim
ǫ→0
‖(I|O + ǫI)†‖1 is easy to define:

lim
ǫ→0
‖(I|O + ǫI)†‖1 =

lim
ǫ→0

[a + (n − 1)|b| + |a(1 + ǫ) + (n − 1)b + (n − 1)(a + (1 + ǫ)b + (n − 2)b)|] =

lim
ǫ→0

[a + (n − 1)|b| + |a + (n − 1)b + (n − 1)(a + b + (n − 2)b)|] =

lim
ǫ→0

[|n(a − b + b ∗ n| + a + (n − 1)|b|] =

lim
ǫ→0

[∣
∣
∣
∣
∣
∣
n

(

c(n − 1) + (1 + ǫ2) + c − nc

(1 + ǫ2)(cn + (1 + ǫ2))

)∣
∣
∣
∣
∣
∣
+

c(n − 1) + (1 + ǫ2) + (n − 1)c
(1 + ǫ2)(cn + (1 + ǫ2))

]

=

We know that c = n + 2ǫ, so lim
ǫ→0

c = n so we can continue the above formula like this:

lim
ǫ→0

[∣
∣
∣
∣
∣
∣
n

(

n(n − 1) + (1 + ǫ2) + n − n2

(1 + ǫ2)(n2 + (1 + ǫ2))

)∣
∣
∣
∣
∣
∣
+

n(n − 1) + (1 + ǫ2) + (n − 1)n
(1 + ǫ2)(n2 + (1 + ǫ2))

]

=

∣
∣
∣
∣
∣
∣
n

(

n(n − 1) + 1 + n − n2

(n2 + 1)

)∣
∣
∣
∣
∣
∣
+

n(n − 1) + 1 + (n − 1)n
(n2 + 1)

=
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n

n2 + 1
+

2(n − 1)n + 1
n2 + 1

That is in the case of the norm ‖ · ‖1,

lim
ǫ→0
‖M†‖1 =

n

n2 + 1
+

2(n − 1)n + 1
n2 + 1

,

and
lim
ǫ→0
‖M‖1 = n.

Based on these

lim
ǫ→0
κ(M) =

(

n

n2 + 1
+

2(n − 1)n + 1
n2 + 1

)

n =
2n3 − n2 + n

n2 + 1

We know that lim
ǫ→0
κ(O + ǫI) = ∞, therefore, for the norm ‖ · ‖1, the original statement is

that lim
ǫ→0

κ(M)
κ(O + ǫI)

= 0 is true.

Generalization to other norms

The theorem’s (4.4) result is that

lim
ǫ→0
‖A‖α = ∞⇔ lim

ǫ→0
‖A‖β = ∞,∀A ∈ Rn×m (4.11)

and
lim
ǫ→0
‖A‖α = L1 ⇔ lim

ǫ→0
‖A‖β = L2,∀A ∈ Rn×m, L1, L2 ∈ R (4.12)

We saw that for the norm ‖ · ‖1:

lim
ǫ→0
‖O + ǫI‖1 = L, 0 < L,

that is, the limit approaches a finite value L, and

lim
ǫ→0
‖(O + ǫI)−1‖1 = ∞

So, if we calculate the condition number with the general norm ‖ · ‖, then based on (4.11)
and (4.12)

κ(O + ǫI) = ‖O + ǫI‖‖(O + ǫI)−1‖ = ∞

is also true. As stated earlier, and based on (4.12), we know that for the general norm ‖ · ‖
it is also true that

lim
ǫ→0
‖M†‖∞ = L3, 0 < L3
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and
lim
ǫ→0
‖M‖∞ = L4, 0 < L4,

so
lim
ǫ→0
‖M†‖‖M‖ = L5, 0 < L5,

that is, the condition number κ(M) is finite even for a general norm. Consequently, even

when using a general norm, it is true that lim
ǫ→0

κ(M)
κ(O + ǫI)

= 0.

�

4.2 The Rounded Hilbert matrix

Hilbert introduced the H Hilbert matrix in his work in 1894 [34]. This is an n size square
matrix, where the entries are the following fractions:

Hi j =
1

i + j − 1
,∀1 ≤ i, j ≤ n

For instance, the 4 × 4 Hilbert matrix:

H4 =





1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7





The inverse of the Hilbert matrix consists of integer numbers, where the elements can be
computed with this formula:

(Hn)−1
i j = (−1)i+ j(i + j − 1)

(

n + i − 1
n − j

)(

n + j − 1
n − i

)(

i + j − 2
i − 1

)2

This is the inverse of the matrix H4:

H−1
4 =





16 −120 240 −140

−120 1200 −2700 1680

240 −2700 6480 −4200

−140 1680 −4200 2800





It is known that the Hilbert matrix is ill-conditioned; Table (4.1) illustrates the maximum
absolute values in the matrices and their condition numbers. It can be seen that this
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matrix is very ill-conditioned; for example, the Gaussian-elimination implementations
used 64-bit floating-point numbers cannot compute the inverse matrix.

Size max(‖H−1
i j
‖) κ(Hn)

2 12 19.28147

4 6480 15513.739

5 179200 476607.25

6 4410000 14951059

10 3.481 × 1012 1.526 × 1010

12 3.659 × 1015 1.422 × 1016

15 1.147 × 1020 9.329 × 1019

20 3.614 × 1027 2.881 × 1025

50 1.290 × 1073 3.573 × 1053

Table 4.1: Condition numbers

As it is shown in Chapter (2), not every number is representable in floating-point
number systems; these problematic numbers are rounded. Consequently, if we write a
software that stores a Hilbert-matrix in the memory, we store only the rounded elements
of the matrix. We will refer to this modified matrix as the rounded Hilbert matrix, and we
denote it with the following notation:

RN(Hn) =





1 . . . RN( 1
1+ j−1 ) . . . RN( 1

1+n−1 )
...

. . .
...

RN( 1
i+1−1 ) . . . RN( 1

i+ j−1 ) . . . RN( 1
i+n−1 )

...
. . .

...

RN( 1
n+1−1 ) . . . RN( 1

n+ j−1 ) . . . RN( 1
2n−1)





(4.13)

4.2.1 Rounded Hilbert matrix example problem

From the Rounded Hilbert matrix we can define an extremely unstable LO problem:

min z = 0 (4.14)

s.t. RN(H)x = b (4.15)

0 ≤ x (4.16)
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where the right-hand side is the sum of the corresponding row of the matrix:

bi = 2.025
n∑

j=1

RN
(

1
i + j − 1

)

(4.17)

Obviously, for exact (non-rounded) values there is only one possible solution, where all
x j = 2.025, for all 1 ≤ j ≤ n. The simplex algorithm has to invert the Hilbert matrix to
obtain this solution. Because of the equality type of constraints, the logical variables are
fixed with zero. If the starting basis is a logical basis, the starting solution is infeasible,
because the logical variables are the basic variables, and their value is nonzero. In this
case, the classic dual simplex algorithm is preferred. Below we demonstrate the solution
process of a simple Rounded Hilbert matrix problem with rounded matrix elements, but
using exact arithmetic. After that, we solve the same problem using 16-bit floating-point
numbers to demonstrate the weak points of this number system if we would like to solve
this problem. For the sake of a simpler demonstration, let n = 4. The rounded matrix of
this matrix is the following:

RN(H4) =





1 0.5 0.333252 0.25

0.5 0.333252 0.25 0.1999512

0.3332520 0.25 0.1999512 0.166626

0.25 0.1999512 0.166626 0.1428223





This is the correct inverse of this matrix, where the fractional parts are rounded to 4 digits:

RN(H4)−1 =





22.7985 −190.5524 403.0549 −243.3644

−190.5524 1929.8555 −4384.0736 2746.5030

403.0549 −4384.0736 10362.6972 −6657.6286

−243.3644 2746.5030 −6657.6286 4355.1226





It is clear that the difference of RN(H4) and H4 is small:

‖RN(H4) −H4‖F = 0.0001775

While the difference between RN(H4)−1 and H−1
4 is much larger:

‖RN(H4)−1 −H−1
4 ‖F = 6175.5905

The above matrix is the author’s own example.
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A note on computing of b

In both cases the matrix and b elements are computed with 16-bit floating-point numbers.
As Figure (4.1) shows, there are numbers whose value is represented by their approx-
imation, for example, RN(1

3 ) = 1365
4096 . Moreover, the computation method of b can be

problematic. The obvious algorithm is the Algorithm (4.1): The algorithm adds items in
a row as they come after each other. It is known that the results can be more accurate
if we add the elements in a way that we add the two smallest numbers at first, and we
treat this sum as the other items in the row, see Algorithm (4.2) [67]. But there are more
sophisticated algorithms as well, we used Kahan’s algorithm [40] here. This belongs
to the group of compensated sum algorithms. We can mention some other, more accurate
algorithms also, like Priest’s double compensated summation algorithm [74, 75], Pichat
and Neumaier’s algorithm [73, 69], the cascaded summation of Rump, Ogita, and Oishi
[78]. These algorithms make fewer errors in the sum, but Kahan’s solution is sufficient for
our demonstration purposes. The Table (4.2) contains the different bi values depending
on the summation algorithm. The last column shows the exact values, and underlines
values that are the best approximations, it is clear that Kahan’s algorithm produces an
acceptable b vector.

Algorithm 4.1 Computing the vector b, naive version

Input: A
Output: b

1: for i := 1 to n
2: bi := 0
3: for j := 1 to n

4: bi := RN(bi + A
j

i
)

5: end
6: end

Algorithm 4.2 Computing the vector b, adding in increasing order

Input: A
Output: b

1: for i := 1 to n
2: S := {A0

i
,A1

i
, . . .An

i
}

3: while |S| > 1
4: a := min(S)
5: S := S \ {a}
6: b := min(S)
7: S := S \ {b}
8: S := S ∪ {RN(a + b)}
9: end
10: bi := the only one element of S
11: end
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Algorithm 4.3 Computing the vector b, Kahan’s algorithm

Input: A
Output: b

1: for i := 1 to n
2: s := A0

i

3: c := 0
4: for j := 2 to n

5: y := RN(A j

i
− c)

6: t := RN(s + y)
7: c := RN(RN(t − s) − y)
8: s := t
9: end
10: bi := s
11: end

Naive add Increasing add Kahan Exact

b1 4.21875 4.21484375 4.22265625 38909580815606846191
9223372036854775808 ≈ 4.2185852

b2 2.599609375 2.59765625 2.599609375 2995850767122195939
1152921504606846976 ≈ 2.5984863

b3 1.923828125 1.922851562 1.923828125 35480540059326950687
18446744073709551616 ≈ 1.9234039

b4 1.5390625 1.538085938 1.538085938 28367104447895252567
18446744073709551616 ≈ 1.5377838

x1
12159235
7261219 ≈ 1.6745 3737895

2074634 ≈ 1.8017 29063199
14522438 ≈ 2.0013 2.025

x2 − 50460544
7261219 ≈ −6.9493 − 3712912

1037317 ≈ −3.5793 8181232
7261219 ≈ 1.1267 2.025

x3
6030062
1037317 ≈ 5.8131 4551145

1037317 ≈ 4.3874 2475719
1037317 ≈ 2.3867 2.025

x4
56739562
7261219 ≈ 7.814 5859777

1037317 ≈ 5.649 18954417
7261219 ≈ 2.6104 2.025

Table 4.2: Different b input vectors and solution vectors of a
Rounded Hilbert matrix problem, after 4 iterations
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Our final demo LO model is the following:

min z: 0

y1 + x1 + 0.5x2 + 0.333252x3 + 0.25x4 = 4.22265625

y2 + 0.5x1 + 0.333252x2 + 0.25x3 + 0.1999512x4 = 2.599609375

y3 + 0.333252x1 + 0.25x2 + 0.1999512x3 + 0.166626x4 = 1.923828125

y4 + 0.25x1 + 0.1999512x2 + 0.166626x3 + 0.1428223x4 = 1.538085938

x1, x2, x3, x4 ≥ 0, y1, y2, y3, y4 = 0

4.2.2 Analyzing the solutions

As Table (4.2) shows, if the vector b is computed by Kahan’s algorithm, the simplex
method finds a solution after 4 iterations. Still other cases, where b is a little bit different,
i.e. it is computed by Algorithm (4.1) and (4.2), the solution is still infeasible.

x1 x2 x3 x4 y1 y2 y3 y4 x

y1 1 0.5 0.333252 0.25 1 4.22266

y2 0.5 0.333252 0.25 0.199951 1 2.59961

y3 0.333252 0.25 0.199951 0.166626 1 1.92383

y4 0.25 0.199951 0.166626 0.142822 1 1.53809

d j 0 0 0 0 0 0 0 0 0

Figure 4.1: The starting tableau of the Rounded Hilbert matrix
problem. The most infeasible variable is y1, and x1 is the incoming
variable.

Figures (4.1)-(4.5) show the process of the dual simplex method. The starting basis
is the logical basis, so the variables y1 . . . y4 are the basic variables. These variables are
infeasible because they are fixed type variables; their feasible value is 0. We only need 4
iterations to obtain the solution; the algorithm moves every x variable into the basis.

The cells in Figures (4.2)-(4.5) have 3 parts: The first lines are the results of the 16-
bit floating-point arithmetic. The values in the second line are the real values, they are
computed by rational arithmetic. The last lines show the relative errors of the first lines
(if the error is greater than zero). The pivot values are bordered.

It can be seen that the relative errors grow very quickly, the greatest error after the
last iteration is 118%. But even the size of the error is not the main problem. Figure
(4.5) shows, the computed value of x3 = −0.203125, but the correct value is 1.1267. As
we know, x3 is a plus type variable, namely its feasible range is x3 ≥ 0. For the simplex
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x1 x2 x3 x4 y1 y2 y3 y4 x

x1

1 0.5 0.333252 0.25 1 4.22266

1 0.5 0.333252 0.25 1 4.22266

y2

0.083252 0.083374 0.0749512 −0.5 1 0.488281

0.083252 0.083374 0.0749512 −0.5 1 0.488281

y3

0.083374 0.0888672 0.083313 −0.333252 1 0.516602

0.083374 0.0888943 0.083313 −0.333252 1 0.51662

0.0305023 % 0.00350761 %

y4

0.0749512 0.083313 0.0803223 −0.25 1 0.482422

0.0749512 0.083313 0.0803223 −0.25 1 0.482422

d j 0 0 0 0 0 0 0 0 0

Figure 4.2: The second tableau of the Rounded Hilbert matrix prob-
lem. The variable x1 has a feasible variable, so the next outgoing
variable is y3, and x2 moves into the basis. The value of y3 has a
small relative error.

algorithm, this means that the current basis is still infeasible, thus the algorithm will not
terminate; it identifies x3 as an outgoing variable. In fact, the simplex starts cycling in
our example. Moreover, we cannot be sure that every variable that seems feasible (for
example x1, x2 and x4) is actually feasible.

A variable may be in a given range, but the solver software thinks this variable is
outside of this range. However, the displacement is so small that we can treat this
little difference as a numerical error. The simplex solvers use small tolerances for the
checking of basic variable feasibilities (ǫ f ) or optimality (ǫo) conditions. For example, if
the feasibility range of the plus-type basic variable x j is 0 ≤ x j, its feasibility is checked by
the following:

−ǫ f ≤ x j(instead of 0 ≤ x j )

Let E(v) denote the exact value of a variable v, where v can be an element of x of d

also, and C(v) is its computed version. For example in the Figure (4.5) E(x3) = 1.1267
and C(x3) = −0.203125. If we can trust the computed variables, and the feasibility and
optimality conditions met (by considering the tolerances), we can treat the calculated
values as an acceptable optimal solution:

−ǫ f ≤ C(x j) and − ǫ f ≤ E(x j)
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x1 x2 x3 x4 y1 y2 y3 y4 x

x1

1 −0.199463 −0.249756 3 −5.99609 1.125

1 −0.199854 −0.249634 2.99854 −5.99707 1.12445

0.195435 % 0.0488281 % 0.0488281 % 0.0163116 % 0.0488281 %

y2

−0.00537109 −0.00823975 −0.167236 1 −0.998535 −0.0273438

−0.00539013 −0.00823984 −0.167236 1 −0.998536 −0.027582

0.353271 % 0.00108433 % 0.000213742 % 7.15852e − 05 % 0.86377 %

x2

1 1.06543 0.999512 −3.99805 11.9922 6.19531

1 1.06621 0.999268 −3.99707 11.9941 6.19641

0.0733032 % 0.0243988 % 0.0243988 % 0.0163116 % 0.0177155 %

y4

0.00341797 0.00543213 0.0495605 −0.898926 1 0.0180664

0.00339922 0.00542596 0.0495852 −0.898975 1 0.0179936

0.551758 % 0.113647 % 0.0497437 % 0.00548553 % 0.404297 %

d j 0 0 0 0 0 0 0 0 0

Figure 4.3: The third tableau of the Rounded Hilbert matrix prob-
lem. The outgoing variable is y2, and x3 moves into the basis. The
computation errors are more significant, for example, y4 has a 1.25%
of error.

−ǫo ≤ C(di) and − ǫo ≤ E(di)

Let’s define the following sets:

• OC = {di : di is in the optimal range according to C(di) }

• OE = {di : di is in the optimal range according to E(di) }

• FC = {x j : x j is in the feasible range according to C(x j) }

• FE = {x j : x j is in the feasible range according to E(x j) }

The current basis is numerically acceptable if and only if OC = OE and FC = FE. If the
basis numerically not acceptable, it means that we cannot trust the computed values, so
we have to use more precise number representations.

However, if we would like to determine OE and FE, we have to compute the current
basis inverse using higher precision. The traditional simplex implementations use the
Double format of IEEE 754-2008 standard. The modern CPUs have native hardware
support for this format, so the calculations can be quite fast. We can use the quadruple
format to approximate the E(v). Unfortunately, there are only a few CPU architectures
which supports this format natively, one of them is the IBM Power ISA 3.0 [93]. On X86,
there is no hardware support, so we have to use the slower software implementations.
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x1 x2 x3 x4 y1 y2 y3 y4 x

x1

1 0.0561523 9.21094 −37.125 31.0938 2.14062

1 0.05588 9.19926 −37.0777 31.0263 2.14713

0.487305 % 0.126953 % 0.127563 % 0.217285 % 0.302979 %

x3

1 1.53418 31.1406 −186.125 185.875 5.08984

1 1.52869 31.0263 −185.524 185.253 5.11714

0.359131 % 0.368408 % 0.32373 % 0.335938 % 0.533203 %

x2

1 −0.635254 −37.1875 198.375 −186 0.773438

1 −0.630637 −37.0777 197.808 −185.524 0.740464

0.731934 % 0.296143 % 0.286621 % 0.256348 % 4.45312 %

y4

0.00019455 −0.0568848 0.63623 −1.53418 1 0.000671387

0.000229615 −0.05588 0.630637 −1.52869 1 0.000599378

15.2734 % 1.79785 % 0.886719 % 0.359131 % 12.0156 %

d j 0 0 0 0 0 0 0 0 0

Figure 4.4: The fourth tableau of the Rounded Hilbert matrix prob-
lem. The last outgoing variable is y4, and x4 moves into the basis.
The computation errors are unacceptable, for example, the error of
y4 is 65.5%!

Fortunately, the GNU Compiler can generate a code which uses this format. Table (4.3)
shows the total basis reinversion times using 64 and 128-bit formats for different LO
problems. Moreover, the table demonstrates the slowness of some advanced number
formats; the mpf_class is the arbitrary precision data type of the GNU Multiple Precision
Library, and mpq_class is the rational number data type. We used the PFI basis inverse
representation, and the test environment was the following:

• CPU: Intel(R) Core(TM) i7-2640M CPU @ 2.80GHz

• Memory: 16 GB

• Operating system: Debian 10, 64 bit

• Window manager: IceWM

• Compiler: gcc 8.3.0

As Table (4.3) shows, contrary to expectations for the larger problems, the 128-bit
formats can speed-up the reinversion. The PFI format uses an advanced algorithm to
produce the η vectors; it rearranges the rows and columns of the matrix in order to obtain
sparser vectors to increase the speed of the current reinversion, the FTRAN, and BTRAN
operations. If we use a more precise number representation, the reinverse algorithm
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x1 x2 x3 x4 y1 y2 y3 y4 x

x1

1 25.625 −220.75 473.75 −288.75 1.94727

1 22.7985 −190.552 403.055 −243.364 2.00126

12.3984 % 15.8438 % 17.5469 % 18.6562 % 2.69727 %

x3

1 480 −5204 12280 −7884 −0.203125

1 403.055 −4384.07 10362.7 −6657.63 1.1267

19.0938 % 18.7031 % 18.5 % 18.4219 % 118 %

x2

1 −223 2274 −5192 3266 2.96484

1 −190.552 1929.86 −4384.07 2746.5 2.38666

17.0312 % 17.8281 % 18.4219 % 18.9219 % 24.2188 %

x4

1 −292.5 3270 −7884 5140 3.45117

1 −243.364 2746.5 −6657.63 4355.12 2.61036

20.1875 % 19.0625 % 18.4219 % 18.0156 % 32.2188 %

d j 0 0 0 0 0 0 0 0 0

Figure 4.5: The last tableau of the Rounded Hilbert matrix problem.
The accumulated relative errors make our solution unusable.

obtains more precise results, and it can produce fewer false-nonzero numbers, therefore
the produced vectors will be a little bit sparser. The sparser vectors can compensate for
the slower floating operations. However, the mpf_class and mpq_class types are more
accurate, but they are much slower.

If we would like to implement a simplex solver which can detect that the current basis
is numerically not acceptable with minimal overhead, we cannot compute basis inverse
twice. We need a much faster method we can perform a primary test with. However, this
test is only a heuristic, and we cannot competely trust it; if this primary test says that
the basis is maybe numerically not acceptable, we will perform the much slower final test
introduced above.

4.2.3 Primary test

The primary test performs a quick heuristic check on the current basis. Moreover, if the
basis is stable, it is unnecessary to execute the primary test in every iteration. In our
implementation, it is executed in every iteration with a probability of 0.05. Random
behavior can help to avoid the effects of the structural properties of the current LO
problem.

In every iteration, it is necessary to use an FTRAN and a BTRAN operation. After
each step, we can perform a modified FTRAN and BTRAN (FTRAN-CHECK and BTRAN-
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Name 64-bit [sec] 128-bit [sec] mpf_class [sec] mpq_class [sec]

MAROS-R7 26.1996 36.495 3202.25 > 3600

STOCFOR2 0.025799 0.025726 0.335758 0.152447

STOCFOR3 2.88615 2.9099 15.1871 10.6659

OSA-60 1.91193 1.89189 3.11958 2.94903

CRE-D 1.33815 1.41701 22.9924 > 3600

KEN-13 5.5606 5.41003 22.3411 69.0658

KEN-18 116.673 114.768 303.817 > 3600

PDS-10 1.29678 1.37789 7.64831 > 3600

PDS-20 8.37138 8.3885 69.3707 > 3600

Table 4.3: Reinversion times using different number representa-
tions.

CHECK) such a way that we use 128-bit internal numbers. The input and the η vectors
store 64-bit numbers, and we convert them to 128-bit in order to use this type of precision
during the algorithm. In the end, the result is converted back to 64-bit precision. If
the basis is numerically not acceptable, the difference between the results of FTRAN
(BTRAN) and FTRAN-CHECK (BTRAN-CHECK) is higher than a given µ threshold. Let
denite α and αCHECK the output of FTRAN and FTRAN-CHECK. This difference can
be expressed in several ways, so we introduce the following indicators:

Iα =
max(‖α‖, ‖αCHECK‖)
min(‖α‖, ‖αCHECK‖)

− 1 (4.18)

Iβ = ‖α − αCHECK‖1 (4.19)

max1 = ǫr‖α‖∞ (4.20)

max2 = ǫr‖αCHECK‖∞ (4.21)

Iγ = max
{ ‖αi − αi

CHECK
‖

max{|αi|, |αi
CHECK

|}
: if αi > max1 or αi

CHECK > max2
}

(4.22)

Here, Iα measures the summarized relative difference of the norm of the vectors. Iβ
is the absolute difference, and Iγ measures the largest relative difference of the elements
of the two vectors. The values of max1 and max2 (where ǫr is a relative tolerance) can
help us to exclude values that are too small so they are treated as zeroes. We can define
a threshold for each indicator, namely µα, µβ, and µγ, or if we do not want to distinguish
them, just simply µ. If for any µx < Ix (where x ∈ {α, β, γ}), then the primary test triggers
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the final test:

triggerx =





1, if µx < Ix

0, otherwise
(4.23)

The question is what should be the value of µ?

Adaptivity

The value of µ depends on the numerical properties of the current LO problem. The
adaptivity method originally introduced here is used in the area of digital signal process-
ing [86]. As the final test is slow, it is not worth applying frequently. Let ζ denote the
final test frequency, it can be in the range of 0.02 . . . 0.05. We follow this strategy: Set the
threshold µ in a way that the rate of triggering the final test is around ζ. This strategy
fine-tunes µ so that it follows the changes of the indicator variables. The triggering rate
is computed with exponential averaging, using the forgetting factor α:

rate := α × rate + (1 − α)trigger (4.24)

If the triggering rate is higher than ζ, our mechanism increases µ, otherwise it decreases
it:

µ := µ × (1 + signum(rate − ζ)ǫ) (4.25)

We notice that (4.25) changes the threshold here by a ratio because the numerical errors
can change in a wide range, but in some other applications we can use finer steps, where
the step is ǫ × signum(rate − ζ), and it is added to the threshold.

We emphasize that as we have more indicator variables, each indicator has its own
set of adaptivity variables, like rate, ǫ, ζ, and α. This method can be more flexible if there
is feedback from the final test. If the final test says that the triggering was a false alarm,
it can "punish" the primary tester; the corresponding µ is increased, and the adaptivity
variables change in a way that the primary tester will be less sensitive.

4.3 Test results

In the following section different LO problems are tested. The problems have the simple
Ax = b form, where the elements of b are the row sums of the actual A matrix, and
the objective function is 0. In an ideal case, when there is no floating-point rounding
and numerical limitations, then every element of x is 1. The last tests of Netlib and
Kennington’s problems are different, they are well-known stable real-life problems. The
proposed numerical error detector algorithms are implemented in our software named
Pannon Optimizer (PanOpt).

During the tests, if a software finds an optimal solution, the relative error of the
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solution is calculated by the following formula:

Ax = b

error =
m

max
i=1





|bi − bi|
max(|bi|, |bi|)




,

where x is the computed solution vector.

Rounded Hilbert matrix

The traditional simplex implementations use double-precision floating-point numbers to
represent the LO model. Moreover, these models are stored in text file formats, like the
MPS. In these files, the numbers are written in a scientific format with a finite number of
digits. Consequently, not every rational number can be stored accurately, for example,
1
3 . If we want to solve the classic, non-rounded Hilbert matrix, we have to change the
inner structure of the LO input model representation too, but this is not the topic of
this dissertation. This is why we investigated the Rounded Hilbert matrix problem
introduced in (4.2.1). Table (4.4) shows the output of 5 different sizes of problems. As can
be seen, each software found an optimal solution, which is, of course, not the solution of
the non-rounded Hilbert matrix. For example, the nonzero basis variables of the Pannon
Optimizer’s result for the largest test problem are the following:

x1 = 0.99955 x2 = 1.02222 x3 = 0.755118 x4 = 1.9287

x7 = 2.876 x9 = 3.63773 x17 = 11.5868 x30 = 12.5929

x39 = 6.9013 x54 = 26.0923 x84 = 16.7383 x89 = 14.8661

Still, if we substitute these values into the input problem, and compute the b = Ax vector,
and the largest relative error between the original b and b is obtained (see last column of
Table (4.4), it is clear that these solutions are really acceptable.

Rounded Pascal matrix

The Pn Pascal matrix contains the binomial coefficients. It is an n-size square matrix,
where the elements are the following:

pi
j =

(

i + j

i

)

=
(i + j)!

i! j!

In other words,

pi
j =





pi
j−1 + pi−1

j
, if i > 1 and j > 1

1, otherwise
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Test [n, software] Iterations Output Time [sec] Error

5, PanOpt 6 Optimal 0.0009 2.51033e-16

5, Glpk 5 Optimal 0.000233 1.8612e-17

5, Clp 5 Optimal 0.000462 7.44482e-17

10, PanOpt 8 Optimal 0.0025 4.36744e-09

10, Glpk 9 Optimal 0.000327 9.11289e-08

10, Clp 6 Optimal 0.000997 5.86112e-08

20, PanOpt 17 Optimal 0.0057 2.15281e-09

20, Glpk 10 Optimal 0.000659 4.23211e-08

20, Clp 8 Optimal 0.000775 4.79649e-09

50, PanOpt 23 Optimal 0.0201 2.08407e-09

50, Glpk 14 Optimal 0.004156 9.03789e-08

50, Clp 13 Optimal 0.00241 1.33875e-08

100, PanOpt 28 Optimal 0.0448 8.31182e-09

100, Glpk 19 Optimal 0.014449 2.06594e-08

100, Clp 20 Optimal 0.007494 6.90211e-09

Table 4.4: Comparison of different size of Rounded Hilbert matrix
problems with 3 softwares.
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For example, P4 is the following:

P4 =





1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20





It is well-known that the Pascal matrix is very ill-conditioned [1], so it can be a good
test matrix for our numerical error detector. However, as n grows, the magnitude of
the matrix elements grow exponentially, so after a given size, the floating-point number
system that was used stores only rounded values. Formally, the elements of the Rounded
Pascal matrix are the following:

pi
j =





RN(pi
j−1 + pi−1

j
), if i > 1 and j > 1

1, otherwise

We tested large (n ≥ 50) Rounded Pascal matrices in order to check that they are not
singular. The test software inverted the matrices with Gaussian elimination, using rational
arithmetic. The software executed the inversions perfectly, so the test matrices showed in
Table (4.5) are not singular. As can be seen, our software (Pannon Optimizer) can detect
that we need advanced number representation, while the answers of the other software
(singular matrix, infeasible problem) are wrong.

Rump’s ill-conditioned matrix

As saw in the previous tests, the matrices were rounded, and they had very large ele-
ments. However, the later property is not reasonable in real life examples. There are
ill-conditioned matrices with much smaller elements. Rump proposed a method that
can produce ill-conditioned matrices, which can have smaller elements [77]. Later, he
proposed a more general method in [94]. We constructed the following matrix based on
the later paper:

A =





−1 99 99 99 101

1 −100 0 0 0

0 1 −100 0 0

0 0 1 −100 0

0 0 0 1 −100





The condition number of A is large: κ(A) = 49830891433.49631 (computed by GNU
Octave). The test software gave the following results:
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Test [n, software] Iterations Output Time [sec] Error

10, PanOpt 13 Optimal 0.0018 2.58379e-16

10, Glpk 10 Optimal 0.000286 9.68922e-17

10, Clp 13 Optimal 0.000647 1.89848e-15

50, PanOpt 18 Double precision is insufficient 0.0487

50, Glpk 18 Infeasible 0.003956

50, Clp 20 Infeasible 0.002454

100, PanOpt 18 Double precision is insufficient 0.011

100, Glpk 18 Infeasible 0.003634

100, Clp 20 Infeasible 0.002351

150, PanOpt 18 Double precision is insufficient 0.012

150, Glpk 0 Singular matrix 0.032122

150, Clp 85 Infeasible 0.027324

200, PanOpt 18 Double precision is insufficient 0.016

200, Glpk 0 Singular matrix 0.043781

200, Clp 135 Infeasible 0.05328

Table 4.5: Comparison of different size of Rounded Pascal matrix
problems with 3 softwares. The right outputs are underlined.
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Configuration Netlib time Netlib iterations Kennington time Kennington iterations

A 224.48 sec 252614 2086.75 sec 502802

B 234.71 sec 245763 2321.67 sec 538561

C 231.4 sec 245877 2245.03 sec 523667

D 228.69 sec 252707 2119.63 sec 507557

Table 4.6: Summarized execution times and iteration numbers in
different test configurations.

• Pannon Optimizer: A numerical error was detected by the final test after 4 iterations.

• Clp, Glpk: The produced solution vector is the following: x1 = 0, x2 ≈ 0.99, x3 ≈
0.9999, x4 ≈ 0.999999, x5 ≈ 1. The values are similar, but there is a little difference
between the two software’s output, so the relative error of the Clp is ≈ 1.33, and the
error of Glpk is ≈ 1.04.

That is, the Clp and Glpk produced a significantly wrong solution, while the PanOpt
detected that we need advanced number representation.

Netlib and Kennington problems

The Netlib and Kennington LO problems are tested with the proposed detector algorithm.
Obviously, they are numerically stable problems, so the expected output is that they can be
solved using simple double floating-point numbers. Our tests were successful, we have
obtained the optimal solution for every problem. It is clear that the new test steps can slow
down the software, so the running times were tested. There are four test configurations:

• A: The detector algorithm is switched off.

• B: The primary test is executed with a probability of 0.05.

• C: The primary test is executed with a probability of 0.05, and if the final test detects
a false positive triggering, this probability is multiplied by 0.7.

• D: The primary test is executed with a probability of 0.01, and if the final test detects
a false positive triggering, this probability is multiplied by 0.7.

We summarized the total execution times and iterations per configurations, the results
can be seen in Table (4.6).

The Appendix (B) contains the detailed results for the test problems. It can be seen
that there are a few problems, where the checking algorithm can decrease the iteration
number (and the execution time, too): If the primary test triggers a reinversion, we obtain
a more accurate basis inverse representation, so the software can navigate back to the
correct direction. For example, QAP8 is solved in under 26.85 seconds in Configuration-
B, instead of 32.91 seconds. These test results are highlighted with a green background.
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4.4 Major results and summary of accomplishments

We have developed an adaptive heuristic algorithm embedded in the simplex method
that monitors the numerical stability of the basis.

• In Section 4.1 we proved for a general matrix norm that it is not enough to calculate
the condition number of the coefficient matrix during preprocessing, as it can be
low, while the matrix can have a submatrix with extremely high condition number.

• A two-phase testing algorithm has been incorporated into the simplex method:
The first phase is a quick test, and if its output exceeds a threshold, a slower but
reliable test is run. The method works adaptively, tests run less frequently for stable
problems and more often for unstable ones.
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Chapter 5

Low-level optimizations

5.1 Intel’s SIMD architecture

The SIMD (Single Instruction, Multiple Data) architectures provide a powerful tool to
perform the identical low-level operations on multiple data in parallel [31]. It was suc-
cessfully used in the simplex method [98], and in other numerical algorithms [95]. The
older Intel CPUs (more precisely, their FPU, i.e. Floating-point Unit) used a stack to store
32, 64 or 80-bit floating-point numbers. This architecture can perform one operation only
on a single data. In 1999 Intel introduced the SSE (Streaming SIMD Extensions) instruc-
tion set in the Pentium III processor. It contained 70 new instructions, which can operate
on multiple (namely four) single-precision numbers. The processor had 8 brand new,
128 bit wide registers, their names were XMM0, XMM1, . . ., XMM7. One XMM register
can store 4 single-precision (32-bit) numbers. The arguments of the operations are the
registers (or memory), and the result will be stored in the other register (or memory). For
instance, the

ADDPS xmm0, xmm1

instruction adds the content of register XMM1 to XMM0, that is, the CPU adds the first
number in XMM0 to the first number of XMM1, and so on, as Figure (5.1) shows.

Figure 5.1: Addition using XMM registers
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The main area of use of SSE is digital signal processing and graphics processing
because the single-precision format is enough. However, because of the fact that SSE
does not support 64-bit floating-point operations, it was not very useful for engineering
and scientific purposes. Intel’s answer to this problem was the SSE2 which supports
64-bit numbers as well; it was introduced by the Pentium 4. The XMM registers remained
128 bit wide, so one register can contain two double-precision floating-point numbers
(and of course, four single-precision numbers). The later SSE3 and SSE4 instruction
sets added a few expansions to the earlier instruction sets, like dot product and integer
number support, but they are irrelevant in this dissertation.

In 2011, Intel extended the SIMD with the AVX (Advanced Vector Extensions) in-
struction set. This extension doubles the size of the XMM registers to 256-bit wide. The
new, wider registers are called YMM. The lower 128-bit range of these registers are the
old XMM registers. Now one register can store four 64 bit floating-point numbers, or
eight 32-bit numbers. Moreover, AVX’s have 16 YMM registers. The AVX2 instruction
set provides some integer operations with the new registers, and FMA (Fused Multiply
Add) operations on floating-point numbers.

Intel introduced AVX-512 in July 2013, which extended the SIMD registers to 512-bit
length. The new registers were the ZMM registers, from ZMM0 to ZMM31. The AVX-512
included several instruction sets, and different CPUs support different sets. Here are
some examples (including but not limited to):

• AVX-512F

• AVX-512DQ

The modern Intel CPUs have one more useful feature; they have two memory ports.
It means that, while the CPU calculates, they can load other data from the memory in
parallel.

Cache

In this section, a brief summary of the CPU caching will be given because it has some
non-intuitive properties: The inappropriate use of the cache cannot achieve the highest
performance. The communication between the main memory and the CPU is much
slower than the CPU’s speed, i.e., while the CPU is waiting for the memory, it can execute
many (up to a hundred) instructions. To keep the CPU working, engineers injected a
cache memory between the CPU and the main memory. The cache uses faster electric-
circuit elements, but it is more expensive, so the cache size is limited relative to the main
memory. Typical cache sizes are 3-10 MBytes today, while the main memory can be 32
GBytes on desktop computers. Moreover, modern CPUs have more cache levels, where
the lower levels are smaller, but they are faster.

The memory is divided into so-called cache lines, which are equal lengths of memory
partitions. 32 or 64 bytes are typical lengths. If the CPU reads certain bytes from a
memory address, the total cache lines that contain the required data moves to the cache.
Notice that if the required data overlap two cache lines, then those cache lines will be
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loaded. If later instructions need an adjacent memory address its content will already
be in the faster cache, thus the reading time is reduced. However, as the cache size is
limited, the CPU has to make room for a new cache line if the required data item is not
in the cache. In this case, a formerly used cache line is dropped out and its content is
written back to the main memory if it is necessary. When the CPU writes to an address,
the corresponding cache line will be loaded into the cache, and the instruction will be
written there. In this case, the content of that memory address has a copy in the cache,
which is different; this cache line is considered to be dirty, but if we write this content to
the memory, this flag is cleared.

There is little intelligence in the cache controller. If the CPU senses that the software
accesses adjacent memory addresses, then it automatically loads certain next cache lines,
if it is possible. So, if we read or write a memory region from its beginning to its end, the
data that is currently needed will already be in the cache with a high probability.

The SSE2 and AVX instructions support bypassing the cache for memory writing; the
cache line of the current memory address is not loaded and the CPU writes into the main
memory directly. This is the so-called non-temporal writing. Obviously, this mode is much
slower if we need a small amount of data. However, we can keep the more important (i.e.
the frequently used) data in the cache. What happens if we add two large vectors (larger
than the cache), and the result is stored in a third vector? Without non-temporal writing,
the CPU reads the next two items of the sum and it writes the result to the memory. In
the first step, the result is placed into the cache. But, since the vectors are too large, and
their contents fill the cache, the CPU has to drop out an older cache line to the memory.
If the cache line of the result is not prepared for the cache, the CPU has to load that cache
line and, obviously, drops out an older line too. The bypassing prevents the CPU from
loading the cache-line of the destination, so it drops out older cache lines if and only if
there is no more room for the input data. Finally, the performance of this algorithm is
improved.

5.2 Vector addition

Vector addition is one of the most frequently used operations in computational linear
algebra as many optimizations algorithms rely on it.

Let a and b be two n dimensional vectors, a,b ∈ Rn. We propose our implementations
of the following vector addition operation:

a := a + λb,

where λ ∈ R. Its naive pseudo-code:
If a numerical error occurs, the approach shown in Algorithm (5.1) can generate fake

non zeros. This error can be handled with an absolute tolerance ǫa. If the absolute value
of the sum is smaller than the ǫa, we set the result to zero as in Algorithm (5.2).

The absolute tolerance cannot take into consideration the magnitudes of the input
values. The solution can be the relative tolerance ǫr. If the sum is much smaller compared
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Algorithm 5.1 Naive vector addition
Input: a,b, λ
Output: a

1: for i := 1 to n
2: ai := ai + λbi

3: end

Algorithm 5.2 Vector addition using absolute tolerance

Input: a,b, λ
Output: a

1: for i := 1 to n
2: ai := ai + λbi

3: if |ai| < ǫa then
4: ai := 0
5: end
6: end

to the largest absolute value of the input numbers the result is set to zero: In 1968 William
Orchard-Hays [72] suggested the following method using this tolerance, see Algorithm
(5.3).

Algorithm 5.3 Vector addition using relative tolerance, Orchard-Hays’s method

Input: a,b, λ
Output: a

1: for i := 1 to n
2: c := ai + λbi

3: if max{|ai|, |λbi|}ǫr ≥ |c| then
4: c := 0
5: end
6: ai := c
7: end

Determining the maximum of two numbers uses a conditional branching instruction.
We propose a simplified method that uses fewer operations and branching. It is sufficient
to multiply the absolute value of one of the input numbers by the relative tolerance. By
doing this we can save an absolute value and a conditional branching step. The result is
close to zero if the operands have the same order of magnitude and their signs are the
inverses.

The implementation shown in Algorithm (5.2) requires one comparison and a con-
ditional jump instruction. The simplified method with relative tolerance uses one addi-
tion, two multiplications, two assignments, two absolute values, one comparison, and
one conditional jump. Orchard-Hays’s implementation needs one more absolute value
and conditional branching. The additional operations cause overhead in time, and the
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Algorithm 5.4 Vector addition using simplified relative tolerance

Input: a,b, λ
Output: a

1: for i := 1 to n
2: c := ai + λbi

3: if |ai|ǫr ≥ |c| then
4: c := 0
5: end
6: ai := c
7: end

more conditional branching breaks the pipeline mechanism, so these implementations
are slower than the naive one.

The simplified and Orchard-Hays’s method give the same output if |ai| = |λbi|, or
max{|ai|, |λbi|} = |ai|. There is difference if max{|ai|, |λbi|} = |λbi|, and ai(λbi) < 0.

Figure (5.2) shows four examples. Subfigures (5.2a) and (5.2b) represent two examples
for the functioning of Orchard-Hays’s method. In these cases, the magnitude of a is greater
than the magnitude of b. In this case |a|ǫ is chosen by both methods in the comparison.
However, in subfigures (5.2c) and (5.2d) |b| is greater than |a|, so we can observe the
difference between the two methods: There is a small range between |a|ǫ and |b|ǫ, where
the simplified method will not move the result to zero unlike the Orchard-Hays’s method.
Namely, the output of the two methods is different if

|a|ǫ < |ab| ≤ |b|ǫ.

Note that not only can the two results differ if a and b are close to zero.

Figure 5.3: The red area is the small range where the two methods
give a different result. The Orchard-Hays’s method goes to zero in
the blue and red ranges, while the simplified method moves to zero
only in the blue area.
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(a) Orchard-Hays’s method if b < 0 and a > 0.

(b) Orchard-Hays’s method if b > 0 and a > 0.

(c) The simplified method if a < 0, b > 0, and |a| < b.

(d) The simplified method if a < 0, b > 0, and |a| < b.

Figure 5.2: Comparison of Orchard-Hays’s and the simplified ad-
dition algorithms. For the sake of simplicity, λ = 1 and ǫ = 0.02.
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5.2.1 SIMD vector addition

As conditional jumping breaks the pipeline mechanism, it slows down the execution of
the program. It is useful to implement the algorithms in a way that is free from conditional
jumping. Intel’s SIMD architecture contains several instructions that help us design such
an implementation. We will use the following atomic instructions:

• Move: Moves the content of a register to another register.

• Multiply: Multiplies the number pairs of two registers.

• Add: Adds the number pairs of two registers.

• And: Performs a bitwise AND between two registers.

• Compare: Compares the number pairs of two registers. If they are identical, the des-
tination register will contain a bit pattern filled by 1’s (the result is NaN), otherwise
0.

• Max: Chooses the larger of two numbers stored in two registers. It is used for the
implementation of Orchard-Hays’s addition method.

The detailed description of these instructions can be found in Intel’s instruction set
documentation [37]. The key point of the conditional jump-free implementations (called
accelerated stable addition in this paper) is the compare instruction. It compares the
numbers and stores the results in a register. If the register contains two double pairs then
the comparator places two bit patterns to the destination area. One pattern can be filled
by 1 if the result of the comparison is true, otherwise 0 as it is shown in Figure (5.4). These
bit patterns can be used for masking.

Figure 5.4: The compare instruction of the SSE2 instruction set

In this section, we will refer to the XMM registers only for the easier discussion. But
we notice that the AVX and AVX-512 implementations use YMM and ZMM registers
respectively. Moreover, at first, we describe the algorithm as if we would implement it
in assembly language. However, as we will see in (5.4) it is not the most clever way, it is
much better if we let a modern C++ compiler to generate the assembly level code, and
this code likely will use the registers in the other way.
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Figures (5.5) and (5.6) show the flowchart of the SSE2 versions of our stable add
operations with relative and absolute tolerances. The algorithms add two number pairs
loaded to registers XMM0 and XMM1. The final result goes into XMM2.

The implementations have two major phases: initialization, and processing. We
prepare certain registers to store the constant value of λ (XMM7), ǫr (XMM4), ǫa (XMM6)
and the absolute value mask (XMM5). In the process part we perform the stable add
operations for the successive number pairs, without modifying registers XMM4-XMM7.
Figures (5.5) and (5.6) show only one iteration in the processing phase. One iteration of
the absolute tolerance stable adder performs these 6 steps:

1. Multiply XMM1 and XMM7, store the result in XMM1, XMM1 will store λbi.

2. Add XMM1 to XMM0, so XMM0 stores c = ai + λbi.

3. Move XMM0 to XMM2. We have to store the original value of c, in order to use its
absolute value in later steps.

4. Bitwise AND between XMM2 and XMM5, store the result in XMM2. Therefore
XMM2 stores |c|.

5. Now we have to compare |c| and ǫa. If |c| < ǫa, then the CPU sets the bits of the
corresponding floating point number in XMM2, otherwise clears them.

6. Bitwise AND between XMM2 and XMM0. After this step, if |c| < ǫa then XMM2
stores zero, because of the cleared bit mask in XMM0, otherwise XMM2 stores c.

The stable add operation that uses relative tolerance performs the following 9 steps in
one iteration:

1. Multiply XMM1 and XMM7, store the result in XMM1, XMM1 will store λbi.

2. Move XMM0 to XMM2. We have to store the original value of ai and λbi, in order to
use their absolute value in the later steps.

3. Add XMM1 to XMM2, so XMM1 stores c = ai + λbi.

4. Move XMM2 to XMM3, because we will use the absolute value of c in the next steps,
but we will need the original value of c as well.

5. Bitwise AND between XMM3 and XMM5, store the result in XMM3. Therefore
XMM3 stores |c|.

6. Bitwise AND between XMM0 and XMM5, XMM0 stores |ai|.

7. Multiply XMM0 and XMM4, and store the result in XMM0, so XMM0 stores |ai|ǫr.

8. Now we have to compare |ai|ǫr and |c|. If |ai|ǫr < |c|, then the CPU sets the bits of the
corresponding floating point number in XMM0, otherwise clears them.
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9. Bitwise AND between XMM2 and XMM0. After this step, if |ai|ǫr ≥ |c| then XMM2
stores zero, because of the cleared bit mask in XMM0.

The operations above belong to exactly one SSE2 or AVX instruction, so the reader can
easily reproduce our results. These implementations use several additional operations
on top of the one addition and multiplication, so they have an overhead compared to
the naive implementation. They use a few additional bit masking steps because Intel’s
SIMD instruction sets (except the AVX-512) have no absolute value operations. However,
we can obtain the absolute value of a floating-point number by clearing the sign bit.
Therefore, we have to apply the bit masking technique to obtain the absolute values, as
in the steps 5-7, in relative tolerance adder, and step 4 in absolute tolerance adder.

However, SSE2 performs every instruction between two number pairs in parallel, so
this overhead is not significant. Moreover, AVX can execute the instructions between
4 number pairs (and AVX-512 doubles this amount). Consequently, the overhead will
be even lower. In order to improve the speed of the algorithms, our implementations
utilize the two memory ports mentioned in Section (5.1): While one number pair is being
processed, the next pair is loaded to other unused registers, so the delay of memory access
is decreased. We use this technique in our dot-product implementations.

We modified the above described relative tolerance adder procedure to implement
Orchard-Hays’s method. Two additional steps are inserted after step 6:

1. Bitwise AND between XMM1 and XMM5, XMM1 stores |λbi|.

2. Use MAX operation between XMM0 and XMM1, XMM0 stores max{|ai|, |λbi|}.

5.3 Vector dot-product

The dot-product between two n dimensional vectors a and b is defined as:

aTb =

n∑

i=1

aibi.

Algorithm (5.5) shows the pseudo-code of its naive implementation. The problem
is that the add operation in line 3 can cause a cancellation error if the operands have
different signs.

Algorithm 5.5 Naive dot-product

Input: a,b
Output: dp

1: dp := 0
2: for i := 1 to n
3: dp := dp + aibi

4: end
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Figure 5.5: Flow chart of the stable add implementation, using ab-
solute tolerance. Arrow numbers show the order of the operations.

This error can be greatly reduced by using a pos and a neg auxiliary variables as
introduced by Maros and Mészáros in 1995 [62]. Positive (negative) products accumulate
in variable pos (neg). Finally, the result is the sum of pos and neg as Algorithm (5.6) shows.
The final add is a stable add operation introduced in Section (5.2). Notice that Kulisch
published his idea of long accumulator hardware in [52] and [53], but CPU vendors had
not implemented it.

The conditional jump of line 5 breaks the CPU pipelining and the execution slows
down accordingly. We developed a solution for C/C++ programs, where we avoid the
conditional jump and substitute it with pointer arithmetic. This method can be used if the
later introduced SIMD based masking methods are not available, for example, the AVX is
disabled by the operating system, or the target platform is a cheaper microcontroller. The
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Figure 5.6: Flow chart of the stable add implementation, using
relative tolerance. Arrow numbers show the order of the operations.

array elements are stored on continuous memory addresses. If a pointer is increased by
1 in C/C++, it will point to the next object. The most significant bit in the bit pattern of a
double type variable is the sign bit. If this bit is 1, the number is negative, otherwise, it is
positive. The conditional jump free implementation uses a double array, where the first
element stores the positive, the second one stores the negative sums. The current product
is added to one of these elements. The address of the current sum variable is selected by a
C/C++ expression: The address of the array is shifted by the product’s sign bit, as Figure
(5.7) shows.

SIMD dot-product

The SIMD dot product uses similar techniques introduced in Section (5.2.1). This imple-
mentation also includes two phases, initialization and processing. We use XMM1 for the
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Algorithm 5.6 Stable dot-product, where StableAdd is an implementation of the addition,
which can use tolerances
Input: a,b
Output: dp

1: dp := 0
2: pos := 0
3: neg := 0
4: for i := 1 to n
5: if aibi < 0 then
6: neg := neg + aibi

7: else
8: pos := pos + aibi

9: end
10: end
11: dp := StableAdd(pos, neg)

negative products, while XMM2 stores the positive products, and XMM4 contains zero
for the comparison.

In the first step, the product is moved into XMM0, the multiplication is supported by
SSE2. The separation of positive and negative products can be implemented in 7 steps:

1. In order to keep the value of the product aibi, save the content of XMM0 to XMM5.

2. Move the content of XMM0 to XMM3, in order to perform the comparison between
zero and the product.

3. Compare XMM3 with XMM4, if aibi < 0, then the CPU sets the bits of the corre-
sponding floating point number in XMM3, otherwise clears them.

4. Bitwise AND between XMM5 and XMM3. If aibi < 0, then XMM5 stores aibi,
otherwise zero.

5. Add XMM5 to XMM1, i.e if aibi < 0, then we add this negative value to XMM1,
otherwise we add zero.

6. Bitwise AND between the inverse of XMM3 and XMM0. If aibi ≥ 0, then XMM3
stores aibi, otherwise zero.

7. Add the content of XMM3 to XMM2, that is, we update the positive sum.

Similarly to the SIMD accelerated vector addition, this dot product algorithm can be
improved using AVX and AVX-512. The stable dot product uses fewer instructions than
the stable add, so the performance of this implementation is better, as we will see in
Section (5.5).
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1 union Number {

2 double num;

3 unsigned long long int bits;

4 } number;

5
6 double negpos [2] = {0.0, 0.0};

7 [...]

8 const double prod = a * b;

9 number.num = prod;

10 *(negpos + (number.bits >> 63)) += prod;

Figure 5.7: Handling positive and negative sums with pointer arith-
metic without branching, where S is the sign bit, M is the significand
and E is the exponent

5.4 Implementation details

The obvious way to implement these algorithms is the use of an assembler. The elementary
SIMD operations introduced in this chapter are equivalent to specific machine code
instructions. However, this method has numerous disadvantages:

• Performance: Although until the 90s, writing software in assembly was a good idea
to optimize the speed and size, it is not a state of the art programming today. The
modern compilers produce much better machine code than most programmers can
write in assembly. Today’s CPUs are much more complex than decades ago. They
use caching, branch predictors, instruction pipelines, and so on. Some instructions
can help or pull back these features. The programmers have to have very strong
and specific knowledge in order to write better code than a compiler can produce.

• Portability: There are major differences between Intel’s 32-bit and 64-bit architec-
tures. The operations can have different arguments, and moreover, there are new
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Figure 5.8: Flow chart of the stable dot product implementation.
Arrow numbers show the order of the operations.

instructions in 64-bit mode. For example, the X86 CPUs do not support integer op-
erations with 64-bit integers in 32-bit mode (this feature is realized by the compilers
or compiler libraries). If we would like to implement a 32-bit assembly code to 64
bit, we have to rewrite it with different instruction codes. However, the 64-bit world
is more complicated: There are different function conventions between Unix/Unix-
like and Windows systems. For example, under Windows, the first four integer
arguments are passed in registers RCX, RDX, R8, and R9. System V AMD64 ABI
is used by some Unix and Unix-like systems: Linux, Solaris, FreeBSD, and macOS.
Here, the first six integers are passed in these registers: RDI, RSI, RDX, RCX, R8, R9.
It is clear that if we would like to implement our software to Windows and Linux,
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we need to implement 64-bit codes twice.

• Maintainability: Assembly codes are very hard to read, implement and modify.
The higher-level languages, like C++ support clean code conventions [63], so it is
much easier to write a code that is easy to read, and it can be the documentation of
itself. Moreover, the probability of writing flawless code in C++ is easier than with
assembly.

The compilers can utilize the SIMD instructions, but sometimes we have to give a bit
of help , especially, when our algorithm is complex. Intel’s solution to this problem is the
intrinsic instructions. These special compiler instructions fit the higher-level source code
and suggest the compiler how it should generate the machine code. Figure (5.9) shows
a simple sample code. The special data type __m128d stores 2 double type variables, and
it can mean that dataA1, dataB1, and other similar variables have to move into the SIMD
registers. The _mm_load_pd loads data from the memory to these variables, and this time,
to the registers. Obviously, _mm_add_pd and _mm_mul_pd adds and multiplies numbers
between these registers. There are other instructions also, we can use bit operations,
comparisons, and more.

There is one more implementation problem: Our SIMD implementations have two
versions, one uses the cache to store the result, one not. The only difference between the
two versions is one instruction: The non-cache versions use movnt instructions instead of
the simple data moving operations. It is clear that in the clean code principles writing of
these functions twice (with one small difference) is contraindicated. The C++ language
gives certain tools to solve this problem. Somehow, we have to pass the storing method
to our function, without loss of speed, so the branching is inappropriate. The traditional
way is using a function pointer or function object. However, our measurements show
performance loss with these methods. The problem is that the compiler has to generate
a machine code that somehow takes into account the current storing method in one
single function. The template system of C++ can help us: If the storing method is the
template argument, then the compiler has to generate different versions of our function,
and one function can be simpler (and faster). In our solution, we used special local
defined structs with inline static functions as template parameters. For example, in
Figure (5.10) the denseToDenseAddSSE2_cache function creates the CACHE_WRITER struct
with the write function inside. This function implements the simple store method using
cache. This struct is passed as template argument to the denseToDenseAddSSE_temp
template function, and this function calls the write method in code lines 15, 21 and 30 of
Figure (5.9). Additional sample codes can be found in Appendix E.

For performance reasons, in Figures (5.9) and (5.10) the array pointers of the function
arguments have the __restrict__modifier. This modifier tells the compiler that the two
arrays do not overlap each other, so the compiler can generate a machine code that is a
little bit faster.

The SSE2, AVX, and AVX-512 implementations have their special hardware require-
ments. If the current CPU can support only SSE2 instructions, the software will not use
the AVX functions. However, these C++ instructions needs some GCC compiler options:
-msse2, -mavx, -mavx512f -mavx512dq. But if we apply these options on every function,
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1 template <class WRITER>

2 void denseToDenseAddSSE2_temp (const double * __restrict__ a,

3 const double * __restrict__ b,

4 double * c,

5 size_t count , double lambda) {

6 const size_t rem1 = count % 4;

7 size_t i;

8 __m128d mul = _mm_set_pd1(lambda);

9 for (i = 0; i < count - rem1; i += 4) {

10 // c = a + b * lambda

11 __m128d dataA1 = _mm_load_pd(&a[i]);

12 __m128d dataB1 = _mm_load_pd(&b[i]);

13 __m128d dataC1 = _mm_add_pd(dataA1,

14 _mm_mul_pd(dataB1, mul));

15 WRITER::write(c + i, dataC1);

16
17 __m128d dataA2 = _mm_load_pd(&a[i + 2]);

18 __m128d dataB2 = _mm_load_pd(&b[i + 2]);

19 __m128d dataC2 = _mm_add_pd(dataA2,

20 _mm_mul_pd(dataB2, mul));

21 WRITER::write(c + i + 2, dataC2);

22
23 }

24 const size_t secondCount = rem1 / 2;

25 if (secondCount) {

26 __m128d dataA = _mm_load_pd(&a[i]);

27 __m128d dataB = _mm_load_pd(&b[i]);

28 __m128d dataC = _mm_add_pd(dataA ,

29 _mm_mul_pd(dataB , mul));

30 WRITER::write(c + i, dataC);

31 i += 2;

32 }

33 for (; i < count; i++) {

34 c[i] = a[i] + b[i] * lambda;

35 }

36 }

Figure 5.9: The source code of the naive SSE2 version vector-vector
add template function.
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1 extern "C" void denseToDenseAddSSE2_cache (

2 const double * __restrict__ a,

3 const double * __restrict__ b,

4 double * c,

5 size_t count , double lambda) {

6 struct CACHE_WRITER {

7 inline static void write(double * address ,

8 __m128d & value) {

9 _mm_store_pd(address , value);

10 }

11 };

12 denseToDenseAddSSE2_temp <CACHE_WRITER >(a, b, c,

13 count , lambda);

14 }

15
16 extern "C" void denseToDenseAddSSE2_nocache (

17 const double * __restrict__ a,

18 const double * __restrict__ b,

19 double * c,

20 size_t count , double lambda) {

21 struct NOCACHE_WRITER {

22 inline static void write(double * address ,

23 __m128d & value) {

24 _mm_stream_pd(address , value);

25 }

26 };

27 denseToDenseAddSSE2_temp <NOCACHE_WRITER >(a, b, c,

28 count , lambda);

29 }

Figure 5.10: The source code of the naive SSE2 version vector-vector
add functions, with caching and non-caching versions.
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the compiler will use AVX512 instructions in our SSE2 and AVX implementations, be-
cause it will be much faster. In order to avoid this, we have to put the SSE2, AVX and
AVX-512 codes into three different libraries, and we have to build these libraries with
different compiler options.

5.5 Computational experiments

In this section a few benchmarking results are presented. At first the tests were performed
on a computer with the following parameters:

• CPU: Intel(R) Core(TM) i7-2640M CPU @ 2.80GHz

• Level 1 cache: 32 KByte

• Level 2 cache: 256 KByte

• Level 3 cache: 4096 KByte

• Memory: 16 GByte

• Operating system: Debian 10, 64 bit

• Window manager: IceWM

The i7-2640M CPU has three cache levels. Intel processors have an inclusive cache
architecture: the higher level caches contain the lower levels, so the test CPU has a 4
MByte cache in total. Moreover, this CPU has two cores, where the L1 and L2 caches are
unique in each core. However, the cores share the L3 cache, so it can happen that more
than one process uses the L3 cache [38].

In order to test the AVX-512 implementations, an Intel Xeon-based server computer
was used:

• CPU: Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz

• Level 1 cache: 32 KByte

• Level 2 cache: 1024 KByte

• Level 3 cache: 33792 KByte

• Memory: 350 GByte

• Operating system: CentOS 7.6.1810 (Core)

We have performed 120 measurements with different sizes of test vectors. In the
sequel, si (0 ≤ i < 120) denotes the size of one vector in the ith test. In the first test,
the size of a vector is 1000 elements (s0 = 1000). The vector sizes grew exponentially:
si = ⌊1000 ∗ 1.1i⌋, thus the largest vector size is 84280971 elements. Since one element is 8
bytes long, the smallest vector needs 8000 bytes, while the largest is 643 MB long.
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5.5.1 Vector addition

Each test was repeated 5000 times, and the execution time was measured. The perfor-
mance was calculated in FLOPS (Floating-point Operations Per Second) based on the
vector lengths and the execution time. We count only the effective floating-point opera-
tions, i.e. the multiplication by λ and the addition. The number of effective floating-point
operations determines how long input vectors can be processed by the current imple-
mentation under a fixed time range. If an implementation uses additional auxiliary
floating-point operations (like multiplying by a ratio), those operations do not count.

The input vectors were randomly generated. If we add two numbers, then we have
two cases: (1) The result is stable, so we keep it, (2) or the result violates a tolerance, so it
is set to zero. Hence, we have generated the input vectors in a way that the likelihood for
setting the result to zero is 1

2 . This method does not support the efficiency of the CPU’s
branch-prediction mechanism. Moreover, if it is required to set for zero half of the results,
it ensures that the non-vectorized implementations have to execute all of their branches.

We distinguish two cases of the vector addition operation:

1. c = a + λb, three vectors case

2. a := a + λb, two vectors case

where the memory areas of the vectors a, b and c are different. Since these cases use the
memory in different ways we tested them for every implementation.

Results for three vectors

If three different memory areas are used with cache, the cache is divided into 3 partitions,
so the performance is decreased. However, if non-temporal memory writing is used,
then larger vectors can be placed in the cache. Moreover, if the larger cache is still tight,
the non-temporal writing saves unnecessary memory operations. Therefore, this writing
mode is recommended for large vectors. Figure (C.1) shows the results for the unstable
implementations. It can be seen that the AVX is the best alternative, because it can perform
four floating point operations per CPU cycle. The performance decreases if the vectors
grow out of the available cache sizes. Since the L3 cache is shared among the cores, our
process cannot use the whole cache, so the efficiency decreases sooner as the total vector
sizes exceed the size of larger caches.

If the vectors are too large, the non-temporal SSE2 and AVX implementations have
the same performance because they execute quick calculating operations, but the speed
of memory operations is much slower than a floating-point operation. This holds for
the cache writing implementations too, but their performance is half of that of the non-
temporal versions, because they use slower memory operations.

Figure (C.2) shows the results for the stable add implementations, where relative
tolerance is used. Since more operations are used for one stable add step, the performance
is lower than in the unstable case. If the vectors are larger than the non-temporal writing
version with AVX is a little faster than the non-temporal SSE2 because the AVX instructions
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have to wait fewer times to read data from memory. While the 9 steps of the stable add
are executed the CPU can read the next data into the cache.

As Figure (C.3) shows, the performance of the absolute tolerance versions has a similar
behavior to the unstable implementations but, of course, in this case the performance is
lower. However, the AVX versions have almost the same performances.

Zigzag curves can be observed in Figures (C.14), (C.15), and (C.16), because the Xeon
CPU responds poorly to cache-free implementations with a small number of elements.

Results for two vectors

If two vectors are used and one of them is the result, the cache line of the current result
memory area is in the cache. This entails that there is no additional communication
between the cache and the memory, so the performance increases. Obviously, bypassing
the cache is not unprofitable in this case, as Figures (C.4), (C.5), and (C.6) show. If the
cache is not bypassed, the overall performance is better than in the three vectors case.

Overhead analysis

We examined how much slower stable adder implementations are than non-stable, naive
versions. To do this, we compared the measurement results of each stable adder with
naive (using cache) and calculated for each test vector size how the performance of the
stable adder is proportional to naive. The results for the i7 processor are shown in Figures
(C.11) and (C.12). It can be seen that in 3 and 2 vector cases, the performance of AVX
implementations is closer to that of naive than that of SSE2. Figures (C.24) and (C.25)
show the results of Xeon Platinum, based on which the AVX-512 strongly approximates
the performance of a naive implementation.

Orchard-Hays’s relative tolerance method

Since SSE2, AVX and AVX-512 have a MAX operation which selects the maximum of
two numbers, Orchard-Hays’s relative tolerance test can be implemented on Intel’s SIMD
architecture. As mentioned in subsection (5.2.1), two additional operations are inserted
into the assembly code; the max selector and an absolute value operation. The modified
implementation uses 11 instructions, where the max operation requires significant amount
of execution time, as Figures (C.7)-(C.10) show. In most cases our algorithm is the fastest,
the highest speedup ratio was 1.281 (1.379 on the Xeon CPU) in the 3 vector SSE2 test,
using cache on the i7 CPU. The worst ratio was 0.97 in the 3 vector, SSE2, and cache-free
case. We mention that this is a very extreme case, in most cases, if our approach is worse,
the ratio moves around 0.99. However, as we saw, a simple policy can be constructed:
depending on the vector’s size, and numbers (2 or 3 vectors), we can choose between the
cache and cache-free implementations. We can avoid most of the situations, when our
method’s performance is lower than the original.

Currently, the Pannon Optimizer uses the C++ version of the introduced algorithms,
so we tested the simplified and Orchard-Hays’s method. We emphasize that during the
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test we only compared the old and the new method, and for this we used the Pannon
Optimizer developed for this purpose, we did not perform any tests in other software.
The test results can be seen in Appendix (D). For most of the test problems, the software
became significantly faster using our simplified solution. There are three problems where
the total execution time was more, but the average time of an iteration decreased; the
origin of longer execution time was the more iteration number. The CYCLE problem
suffered the most drastic slowdown (-20.52 %).

5.5.2 Dot-product

The dot product requires only two vectors and the result is a scalar value. Since, in
general, the input vectors have much more than one element, the writing time of the result
to the memory is irrelevant. The stable AVX implementation uses only 7 instructions in
addition to the loading, multiplying, and add operations, so its performance is better than
the stable add. As Figure (C.13) shows, the performance of stable AVX dot product is
close to the unstable AVX version on the i7 CPU. The stable SSE2 requires more cycles, so
the performance is considerably lower than the unstable SSE2 version. Meanwhile on the
Xeon Platinum (see Figure (C.26), the most efficient stable implementation is the AVX-512
version, but for small vectors, it is much slower than the naive version, but its handicap
is almost gone at larger inputs. The figures shows that if there is no SIMD support, the
branching-free techniques can be very useful if the input vectors are sufficiently large.
Of course, in dot-product tests, it can be observed that the lower the level of caches used
by the program (i.e., the fewer data to be expected), the more different implementations
differ in terms of performance. Later, when the vectors are too high, and the system
cannot take advantage of the cache, the performances will be nearly the same.

5.6 Conclusions

As the performance tests prove, our simplified stable add method is faster than Orchard-
Hays’s method. The applicability of our method is also tested by our simplex method
implementation; the test problems of NETLIB were successfully solved. It is clear that our
pointer arithmetic based stable dot-product implementation is much more efficient than
the conditional branching version if the input vectors are sufficiently large. Moreover,
the tests show that using Intel’s SIMD instruction sets provides strong tools in order to
implement the stable algorithms in an efficient way.

Modern Intel CPUs have at least two memory ports. So, while the next data set is
loading from the memory, the CPU can execute complex computations on the previ-
ous set. This is why the AVX and AVX-512 are so efficient in high performance stable
computations.
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5.7 Major results and summary of accomplishments

In this chapter, we have introduced various low-level acceleration techniques.

• One common numerically stable adder is the Orchard-Hays algorithm. We proposed
an accelerated alternative in Section 5.2, and the speed increase was detected during
testing, and the solutions remained unchanged.

• Various SIMD (Single Instruction, Multiple Data) instruction sets are widespread in
today’s processors, of which we have developed accelerated, conditional branching
free, parallel stable addition and dot-product operations based on Intel’s SIMD
architecture.
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Algebraic Calculations”. In: 20th Conference of the International Federation of
Operational Research Societies (Barcelona, Spain). 2014



Summary

The new results described in the dissertation are briefly summarized below. In the first
two chapters we presented the results, concepts and connections important for the dis-
sertation in the field of linear optimization, simplex method and floating-point number
representation. In the third chapter, we described an accelerated BTRAN algorithm that
significantly accelerated the computational speed in most test problems. The measure-
ment results are shown in the Appendix A. In the next chapter we described the most
important results of the dissertation.

As we know, today’s LP solver software gives a wrong answer for many LO problems,
for example, the problem can be solved, but the software’s answer is that there is no
solution or it is unbounded. It is important for the user of the software to be informed
that they want to solve a problem that cannot be handled with traditional double precision
floating-point number representation, so they should switch to a slower but more accurate
number representation, or even the software can do it automatically. To do this, we present
a heuristic detection algorithm that slightly increases runtime, but notices if the task is
numerically unmanageable and informs the user about it. The runtime changing was
tested for different settings, the results are placed in the Appendix B.

Finally, in the Chapter 5, we described the acceleration possibilities of numerically
stable addition operations. We presented an alternative stable addition algorithm that
simplifies Orchard-Hays’s procedure and uses fewer instructions, which slightly increases
the speed based on our measurements, but the solving software still gives correct results.
The measurement results can be found in the Appendix D. Also, since the traditional
implementation of these methods includes conditional jumping instructions, we pre-
sented implementations based on SIMD technology that are free of these, and due to the
data-level parallelization, a significant increase in the speed of these operations can be
achieved on a larger data set. This was also measured on two different target computers,
a traditional desktop and a server built on scientific calculations, the results are included
in the Appendix C.



Appendix A

Column-wise and row-wise BTRAN test

results

Column-wise Row-wise

Name Iterations Time Iterations Time Speedup Iteration speedup

cre-a.mps 10760 0.554 10760 0.5614 0.9869 0.9869

cre-b.mps 145214 36.14 150888 82.93 0.4358 0.4528

cre-c.mps 11085 0.6013 11085 0.6639 0.9058

cre-d.mps 121078 26.46 121078 57.78 0.4579 0.4579

ken-07.mps 3220 0.08376 3220 0.04454 1.881

ken-11.mps 22692 6.56 22692 3.429 1.913

ken-13.mps 99873 72.16 101580 172.9 0.4172 0.4243

pds-20.mps 84984 98.17 85773 107.5 0.913 0.9215

25FV47.SIF 10425 2.307 10781 1.413 1.633 1.689

80BAU3B.SIF 4222 0.151 4236 0.09611 1.571 1.576

ADLITTLE.SIF 155 0.0004702 155 0.0007409 0.6347

AFIRO.SIF 20 5.572e-06 20 1.79e-05 0.3113

AGG2.SIF 164 0.001509 164 0.0003373 4.473

AGG3.SIF 173 0.001826 173 0.0004179 4.368

BANDM.SIF 814 0.04261 814 0.03768 1.131
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Column-wise Row-wise

Name Iterations Time Iterations Time Speedup Iteration speedup

BEACONFD.SIF 164 0.0008677 164 0.0005094 1.703 1.703

BLEND.SIF 93 0.0002236 93 0.0002765 0.8084

BNL1.SIF 3477 0.2269 3480 0.1819 1.248 1.249

BNL2.SIF 6500 0.8703 6488 0.3796 2.292 2.288

BOEING1.SIF 552 0.01063 552 0.007764 1.369 1.369

BOEING2.SIF 180 0.0008274 180 0.0009156 0.9036

BORE3D.SIF 210 0.001392 210 0.001192 1.168 1.168

BRANDY.SIF 490 0.01416 490 0.0208 0.6807

CAPRI.SIF 288 0.00211 288 0.001046 2.017

CZPROB.SIF 2387 0.03879 2387 0.03687 1.052

D2Q06C.SIF 28132 20.16 27766 10.91 1.848 1.824

D6CUBE.SIF 1156 0.1308 1156 0.1455 0.8992

DEGEN2.SIF 1226 0.1177 1233 0.1157 1.017 1.023

DEGEN3.SIF 8343 4.33 7720 3.373 1.284 1.188

E226.SIF 714 0.02053 714 0.02291 0.8963

ETAMACRO.SIF 941 0.02051 941 0.01322 1.551 1.551

FFFFF800.SIF 1320 0.04689 1320 0.0416 1.127

FINNIS.SIF 377 0.002788 377 0.001822 1.53

FIT1D.SIF 96 0.0002713 96 0.0005968 0.4546 0.4546

FIT1P.SIF 1629 0.4564 1629 0.06499 7.022

FIT2D.SIF 202 0.001329 202 0.00317 0.4193

FIT2P.SIF 8191 13.64 8191 0.8225 16.58

FORPLAN.SIF 391 0.00709 391 0.008465 0.8376

GANGES.SIF 1357 0.02828 1357 0.01094 2.585

GFRD-PNC.SIF 538 0.006851 538 0.006085 1.126

GREENBEA.SIF 9285 1.923 8869 1.19 1.616 1.544

GREENBEB.SIF 13830 3.059 13471 2.083 1.469 1.431

GROW15.SIF 5150 0.4462 5150 0.3762 1.186

GROW22.SIF 9577 1.19 9575 0.8228 1.447 1.446

GROW7.SIF 1465 0.07342 1465 0.087 0.844
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Column-wise Row-wise

Name Iterations Time Iterations Time Speedup Iteration speedup

ISRAEL.SIF 483 0.02077 481 0.01822 1.139 1.135

KB2.SIF 84 0.0002088 84 0.0003652 0.5717

LOTFI.SIF 319 0.003087 319 0.003407 0.906 0.906

MAROS-R7.SIF 4486 5.79 4486 5.215 1.11 1.11

MAROS.SIF 7156 0.9679 7239 0.5903 1.64 1.659

MODSZK1.SIF 747 0.01367 747 0.01327 1.03 1.03

NESM.SIF 2710 0.08968 2704 0.0595 1.507 1.504

PEROLD.SIF 3850 0.8053 3850 0.5202 1.548 1.548

PILOT-JA.SIF 5364 1.691 5347 0.8225 2.056 2.049

PILOT-WE.SIF 6765 1.668 6768 0.9471 1.761 1.762

PILOT.SIF 9285 8.506 9285 6.107 1.393

PILOT4.SIF 1274 0.1068 1274 0.08167 1.308 1.308

PILOTNOV.SIF 1759 0.3356 1759 0.1623 2.067 2.067

QAP8.SIF 22948 15.81 16205 7.979 1.981 1.399

RECIPELP.SIF 48 1.96e-05 48 5.017e-05 0.3906

SC105.SIF 122 0.000378 123 0.0005826 0.6488 0.6542

SC205.SIF 217 0.001487 217 0.001905 0.7802 0.7802

SC50A.SIF 50 4.375e-05 50 0.0001037 0.4218 0.4218

SC50B.SIF 49 3.736e-05 49 8.951e-05 0.4174 0.4174

SCAGR25.SIF 579 0.01068 579 0.006835 1.562 1.562

SCAGR7.SIF 208 0.001184 208 0.001466 0.8075

SCFXM1.SIF 550 0.01092 550 0.005898 1.852

SCFXM2.SIF 1135 0.03693 1135 0.01555 2.375 2.375

SCFXM3.SIF 1748 0.0869 1748 0.03016 2.881 2.881

SCORPION.SIF 360 0.002453 360 0.001432 1.713 1.713

SCRS8.SIF 742 0.01254 742 0.008207 1.528

SCSD1.SIF 133 0.0004349 133 0.0008199 0.5304

SCSD6.SIF 452 0.009113 452 0.01387 0.6569

SCSD8.SIF 1913 0.1259 1913 0.1028 1.225

SCTAP1.SIF 481 0.006822 481 0.005496 1.241
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Column-wise Row-wise

Name Iterations Time Iterations Time Speedup Iteration speedup

SCTAP2.SIF 944 0.01251 944 0.006374 1.963 1.963

SCTAP3.SIF 1206 0.01757 1206 0.00848 2.072

SEBA.SIF 439 0.001856 439 0.001109 1.674

SHARE1B.SIF 394 0.009144 397 0.01131 0.8088 0.8149

SHARE2B.SIF 195 0.001327 195 0.001127 1.178 1.178

SHELL.SIF 599 0.005039 599 0.006929 0.7272 0.7272

SHIP04L.SIF 380 0.001894 380 0.0008154 2.323 2.323

SHIP04S.SIF 381 0.001805 381 0.0007275 2.482

SHIP08L.SIF 690 0.005376 690 0.00357 1.506

SHIP08S.SIF 646 0.005111 646 0.002804 1.823 1.823

SHIP12L.SIF 1157 0.01282 1157 0.007758 1.652

SHIP12S.SIF 1090 0.01152 1090 0.006345 1.816

SIERRA.SIF 626 0.006186 626 0.004052 1.527

STAIR.SIF 456 0.03242 456 0.03615 0.897 0.897

STANDATA.SIF 161 0.0002842 161 0.000381 0.746

STANDGUB.SIF 132 0.0001635 132 0.0002212 0.7394

STANDMPS.SIF 286 0.001004 286 0.0008803 1.141 1.141

STOCFOR1.SIF 99 0.0001685 99 0.0002292 0.7352 0.7352

STOCFOR2.SIF 2369 0.2126 2369 0.0506 4.201

STOCFOR3.SIF 18294 12.2 18294 2.319 5.262

TRUSS.SIF 7018 2.523 7018 1.776 1.421

TUFF.SIF 604 0.01571 604 0.01754 0.8958

VTP-BASE.SIF 351 0.007725 351 0.006073 1.272

WOOD1P.SIF 625 0.03345 625 0.0765 0.4372 0.4372

WOODW.SIF 2633 0.195 2955 0.314 0.6211 0.697
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Numerical error detector test results

Configuration-A Configuration-B

Name Iterations Time Iterations Time Slow-down

cre-a.mps 9904 2.542 9944 2.61 0.974

cre-b.mps 119589 431.1 126991 492.6 0.8752

cre-c.mps 11559 2.971 11350 2.959 1.004

cre-d.mps 100722 353.1 126487 470.2 0.7508

ken-07.mps 3219 0.6639 3219 0.6691 0.9922

ken-11.mps 22502 49.1 22405 47.26 1.039

ken-13.mps 101266 574.5 103000 591.4 0.9715

osa-07.mps 889 0.543 889 0.5515 0.9847

osa-14.mps 2115 4.142 2115 4.267 0.9707

osa-30.mps 3967 18.49 3967 18.45 1.002

osa-60.mps 9118 104.7 9118 104.7 1.001

pds-02.mps 2805 0.6413 2805 0.6469 0.9913

pds-06.mps 11660 14.13 11708 14.47 0.9761

pds-10.mps 22290 48.95 21644 47.89 1.022

pds-20.mps 81197 481.2 82919 523 0.92

25FV47.SIF 10675 3.054 10281 3.11 0.982

80BAU3B.SIF 4086 1.18 4086 1.186 0.9949

ADLITTLE.SIF 155 0.003016 155 0.003333 0.9049

AFIRO.SIF 20 0.000433 20 0.000468 0.9252
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Configuration-A Configuration-B

Name Iterations Time Iterations Time Slow-down

AGG2.SIF 164 0.006125 164 0.006539 0.9367

AGG3.SIF 173 0.006594 173 0.007105 0.9281

BANDM.SIF 746 0.0632 746 0.06842 0.9237

BEACONFD.SIF 164 0.004298 164 0.004522 0.9505

BLEND.SIF 93 0.002123 93 0.002339 0.9077

BNL1.SIF 3446 0.3759 3446 0.3923 0.9582

BNL2.SIF 6398 1.523 6398 1.547 0.9847

BOEING1.SIF 555 0.0291 555 0.03093 0.9409

BOEING2.SIF 183 0.004476 183 0.004865 0.92

BORE3D.SIF 208 0.006709 208 0.007499 0.8947

BRANDY.SIF 466 0.02269 466 0.02543 0.8922

CAPRI.SIF 288 0.009512 288 0.0106 0.8973

CYCLE.SIF 14034 5.124 12846 4.867 1.053

CZPROB.SIF 2336 0.2933 2336 0.2988 0.9814

D2Q06C.SIF 26402 25.64 25343 26.12 0.9817

D6CUBE.SIF 1100 0.5642 1100 0.5882 0.9591

DEGEN2.SIF 1124 0.147 1124 0.1615 0.9102

DEGEN3.SIF 9201 6.557 9016 6.844 0.9582

E226.SIF 708 0.03801 708 0.04122 0.9221

ETAMACRO.SIF 980 0.05054 980 0.05237 0.9651

FFFFF800.SIF 1350 0.09098 1350 0.09239 0.9847

FINNIS.SIF 368 0.01382 368 0.01451 0.9529

FIT1D.SIF 96 0.009465 96 0.00982 0.9638

FIT1P.SIF 1629 0.3351 1629 0.3563 0.9407

FIT2D.SIF 202 0.1787 202 0.1802 0.9916

FIT2P.SIF 8191 14.37 8113 14.7 0.9773

FORPLAN.SIF 395 0.01781 395 0.01921 0.9269

GANGES.SIF 1356 0.1246 1356 0.1249 0.998

GFRD-PNC.SIF 544 0.02977 544 0.03104 0.9592

GREENBEA.SIF 8757 3.649 8892 3.853 0.947
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Configuration-A Configuration-B

Name Iterations Time Iterations Time Slow-down

GREENBEB.SIF 14329 6.584 13457 6.524 1.009

GROW15.SIF 4854 0.7732 4854 0.8185 0.9447

GROW22.SIF 9835 2.496 9835 2.634 0.9475

GROW7.SIF 1465 0.1207 1465 0.1281 0.9427

ISRAEL.SIF 493 0.0233 493 0.02557 0.9109

KB2.SIF 84 0.001675 84 0.001856 0.9025

LOTFI.SIF 319 0.00911 319 0.009591 0.9498

MAROS-R7.SIF 4486 23.97 4486 25.67 0.9339

MAROS.SIF 7231 1.499 7119 1.543 0.972

MODSZK1.SIF 731 0.0555 731 0.058 0.9569

NESM.SIF 2339 0.2846 2339 0.5383 0.5288

PEROLD.SIF 4167 1.444 4159 1.531 0.9427

PILOT-JA.SIF 5509 3.478 5962 4.617 0.7534

PILOT-WE.SIF 7061 2.299 7065 2.462 0.9337

PILOT.SIF 8682 34.57 9284 43.72 0.7907

PILOT4.SIF 1286 0.288 1286 0.315 0.9145

PILOTNOV.SIF 1626 0.5988 1626 0.6305 0.9497

QAP8.SIF 19217 32.91 15302 26.86 1.225

RECIPELP.SIF 48 0.000879 48 0.000975 0.9015

SC105.SIF 122 0.003517 122 0.004085 0.861

SC205.SIF 215 0.009347 215 0.01056 0.885

SC50A.SIF 50 0.00111 50 0.001395 0.7957

SC50B.SIF 49 0.001084 49 0.0014 0.7743

SCAGR25.SIF 631 0.02983 631 0.03353 0.8896

SCAGR7.SIF 208 0.004601 208 0.004898 0.9394

SCFXM1.SIF 551 0.02317 551 0.0243 0.9536

SCFXM2.SIF 1133 0.08375 1133 0.08609 0.9729

SCFXM3.SIF 1759 0.1833 1759 0.1854 0.9886

SCORPION.SIF 362 0.0122 362 0.0129 0.946

SCRS8.SIF 742 0.03975 742 0.04035 0.985
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Configuration-A Configuration-B

Name Iterations Time Iterations Time Slow-down

SCSD1.SIF 136 0.005368 136 0.005651 0.9499

SCSD6.SIF 400 0.02348 400 0.02523 0.9305

SCSD8.SIF 3113 0.4608 3113 0.4785 0.963

SCTAP1.SIF 449 0.01468 449 0.0153 0.9593

SCTAP2.SIF 907 0.06747 907 0.0685 0.9849

SCTAP3.SIF 1234 0.1212 1234 0.1225 0.9896

SEBA.SIF 439 0.01703 439 0.2546 0.06689

SHARE1B.SIF 391 0.0143 391 0.01517 0.9428

SHARE2B.SIF 195 0.004689 195 0.005102 0.9191

SHELL.SIF 599 0.03724 599 0.03814 0.9766

SHIP04L.SIF 378 0.01816 378 0.01862 0.9753

SHIP04S.SIF 381 0.01581 381 0.01598 0.9898

SHIP08L.SIF 685 0.06147 685 0.06274 0.9797

SHIP08S.SIF 647 0.04315 647 0.04455 0.9685

SHIP12L.SIF 1148 0.136 1148 0.1377 0.9879

SHIP12S.SIF 1089 0.0927 1089 0.09545 0.9712

SIERRA.SIF 626 0.04839 626 0.05031 0.9619

STAIR.SIF 462 0.1165 462 0.1375 0.8471

STANDATA.SIF 165 0.005971 165 0.006181 0.966

STANDGUB.SIF 132 0.004857 132 0.005039 0.9639

STANDMPS.SIF 295 0.01167 295 0.01221 0.9557

STOCFOR1.SIF 99 0.00215 99 0.002368 0.9079

STOCFOR2.SIF 2249 0.4259 2249 0.4309 0.9885

STOCFOR3.SIF 17929 41.45 17711 43.19 0.9595

TRUSS.SIF 7739 4.658 7723 4.893 0.952

TUFF.SIF 626 0.03487 626 0.03708 0.9403

VTP-BASE.SIF 346 0.01095 346 0.01153 0.9501

WOOD1P.SIF 625 0.2632 625 0.2728 0.9648

WOODW.SIF 2953 0.99 2953 1.004 0.9865
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Configuration-A Configuration-C

Name Iterations Time Iterations Time Slow-down

cre-a.mps 9904 2.542 9976 2.827 0.8992

cre-b.mps 119589 431.1 126475 492.4 0.8756

cre-c.mps 11559 2.971 11649 3.078 0.9653

cre-d.mps 100722 353.1 112219 407.9 0.8655

ken-07.mps 3219 0.6639 3219 0.671 0.9894

ken-11.mps 22502 49.1 22503 49.34 0.9952

ken-13.mps 101266 574.5 102366 584.8 0.9824

osa-07.mps 889 0.543 889 0.5487 0.9898

osa-14.mps 2115 4.142 2115 4.139 1.001

osa-30.mps 3967 18.49 3967 18.43 1.003

osa-60.mps 9118 104.7 9118 105.3 0.9941

pds-02.mps 2805 0.6413 2805 0.7249 0.8846

pds-06.mps 11660 14.13 11599 14.36 0.9838

pds-10.mps 22290 48.95 22849 51.78 0.9454

pds-20.mps 81197 481.2 81918 508.7 0.946

25FV47.SIF 10675 3.054 10280 3.127 0.9767

80BAU3B.SIF 4086 1.18 4086 1.194 0.988

ADLITTLE.SIF 155 0.003016 155 0.003644 0.8277

AFIRO.SIF 20 0.000433 20 0.000513 0.8441
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Configuration-A Configuration-C

Name Iterations Time Iterations Time Slow-down

AGG2.SIF 164 0.006125 164 0.006906 0.8869

AGG3.SIF 173 0.006594 173 0.007733 0.8527

BANDM.SIF 746 0.0632 746 0.07039 0.8979

BEACONFD.SIF 164 0.004298 164 0.004623 0.9297

BLEND.SIF 93 0.002123 93 0.002371 0.8954

BNL1.SIF 3446 0.3759 3445 0.3928 0.957

BNL2.SIF 6398 1.523 6398 1.557 0.9779

BOEING1.SIF 555 0.0291 555 0.03281 0.8868

BOEING2.SIF 183 0.004476 183 0.005216 0.8581

BORE3D.SIF 208 0.006709 208 0.007695 0.8719

BRANDY.SIF 466 0.02269 466 0.02827 0.8027

CAPRI.SIF 288 0.009512 288 0.01074 0.886

CYCLE.SIF 14034 5.124 -1 -1 -5.124

CZPROB.SIF 2336 0.2933 2336 0.3012 0.9738

D2Q06C.SIF 26402 25.64 26173 27.3 0.9392

D6CUBE.SIF 1100 0.5642 1100 0.5883 0.9589

DEGEN2.SIF 1124 0.147 1124 0.1622 0.9062

DEGEN3.SIF 9201 6.557 9108 6.808 0.9632

E226.SIF 708 0.03801 708 0.04204 0.9039

ETAMACRO.SIF 980 0.05054 980 0.05697 0.8871

FFFFF800.SIF 1350 0.09098 1350 0.09487 0.959

FINNIS.SIF 368 0.01382 368 0.01471 0.9398

FIT1D.SIF 96 0.009465 96 0.01074 0.8811

FIT1P.SIF 1629 0.3351 1629 0.3591 0.9334

FIT2D.SIF 202 0.1787 202 0.1812 0.9862

FIT2P.SIF 8191 14.37 8134 14.64 0.9816

FORPLAN.SIF 395 0.01781 395 0.02106 0.8457

GANGES.SIF 1356 0.1246 1356 0.128 0.9734

GFRD-PNC.SIF 544 0.02977 544 0.03235 0.9204

GREENBEA.SIF 8757 3.649 8895 3.838 0.9507
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Configuration-A Configuration-C

Name Iterations Time Iterations Time Slow-down

GREENBEB.SIF 14329 6.584 12176 5.698 1.156

GROW15.SIF 4854 0.7732 4854 0.8282 0.9336

GROW22.SIF 9835 2.496 9834 2.595 0.9617

GROW7.SIF 1465 0.1207 1465 0.1325 0.9112

ISRAEL.SIF 493 0.0233 493 0.02784 0.8368

KB2.SIF 84 0.001675 84 0.001983 0.8447

LOTFI.SIF 319 0.00911 319 0.009472 0.9618

MAROS-R7.SIF 4486 23.97 4486 24.46 0.98

MAROS.SIF 7231 1.499 7233 1.559 0.9618

MODSZK1.SIF 731 0.0555 731 0.05859 0.9472

NESM.SIF 2339 0.2846 2339 0.2949 0.9651

PEROLD.SIF 4167 1.444 4167 1.531 0.9433

PILOT-JA.SIF 5509 3.478 5503 3.745 0.9288

PILOT-WE.SIF 7061 2.299 7061 2.399 0.9583

PILOT.SIF 8682 34.57 9271 43.31 0.7983

PILOT4.SIF 1286 0.288 1286 0.3131 0.9201

PILOTNOV.SIF 1626 0.5988 1626 0.6369 0.9402

QAP8.SIF 19217 32.91 15124 27.02 1.218

RECIPELP.SIF 48 0.000879 48 0.000984 0.8933

SC105.SIF 122 0.003517 122 0.003952 0.8899

SC205.SIF 215 0.009347 215 0.01053 0.8874

SC50A.SIF 50 0.00111 50 0.001353 0.8204

SC50B.SIF 49 0.001084 49 0.001368 0.7924

SCAGR25.SIF 631 0.02983 631 0.03222 0.9257

SCAGR7.SIF 208 0.004601 208 0.004898 0.9394

SCFXM1.SIF 551 0.02317 551 0.02537 0.9134

SCFXM2.SIF 1133 0.08375 1133 0.08909 0.9401

SCFXM3.SIF 1759 0.1833 1759 0.1913 0.9581

SCORPION.SIF 362 0.0122 362 0.0132 0.9246

SCRS8.SIF 742 0.03975 742 0.04365 0.9106
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Configuration-A Configuration-C

Name Iterations Time Iterations Time Slow-down

SCSD1.SIF 136 0.005368 136 0.005617 0.9557

SCSD6.SIF 400 0.02348 400 0.02613 0.8986

SCSD8.SIF 3113 0.4608 3113 0.4834 0.9531

SCTAP1.SIF 449 0.01468 449 0.01565 0.9378

SCTAP2.SIF 907 0.06747 907 0.06991 0.965

SCTAP3.SIF 1234 0.1212 1234 0.125 0.9695

SEBA.SIF 439 0.01703 439 0.02097 0.8121

SHARE1B.SIF 391 0.0143 391 0.01516 0.9432

SHARE2B.SIF 195 0.004689 195 0.005208 0.9003

SHELL.SIF 599 0.03724 599 0.03988 0.9339

SHIP04L.SIF 378 0.01816 378 0.01986 0.9142

SHIP04S.SIF 381 0.01581 381 0.01621 0.9757

SHIP08L.SIF 685 0.06147 685 0.06404 0.9598

SHIP08S.SIF 647 0.04315 647 0.04596 0.9389

SHIP12L.SIF 1148 0.136 1148 0.1414 0.9616

SHIP12S.SIF 1089 0.0927 1089 0.09845 0.9416

SIERRA.SIF 626 0.04839 626 0.05125 0.9442

STAIR.SIF 462 0.1165 462 0.1387 0.8398

STANDATA.SIF 165 0.005971 165 0.006926 0.8621

STANDGUB.SIF 132 0.004857 132 0.005338 0.9099

STANDMPS.SIF 295 0.01167 295 0.01274 0.9159

STOCFOR1.SIF 99 0.00215 99 0.002408 0.8929

STOCFOR2.SIF 2249 0.4259 2249 0.4314 0.9874

STOCFOR3.SIF 17929 41.45 17729 42.35 0.9786

TRUSS.SIF 7739 4.658 7501 4.692 0.9926

TUFF.SIF 626 0.03487 626 0.03749 0.9302

VTP-BASE.SIF 346 0.01095 346 0.01229 0.8913

WOOD1P.SIF 625 0.2632 625 0.2737 0.9615

WOODW.SIF 2953 0.99 2953 0.9992 0.9908
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Configuration-A Configuration-D

Name Iterations Time Iterations Time Slow-down

cre-a.mps 9904 2.542 9904 2.575 0.9873

cre-b.mps 119589 431.1 117783 442.4 0.9744

cre-c.mps 11559 2.971 11559 3.038 0.9781

cre-d.mps 100722 353.1 109615 407.4 0.8666

ken-07.mps 3219 0.6639 3219 0.6744 0.9843

ken-11.mps 22502 49.1 22502 49.35 0.995

ken-13.mps 101266 574.5 98998 559.7 1.026

osa-07.mps 889 0.543 889 0.5449 0.9966

osa-14.mps 2115 4.142 2115 4.173 0.9927

osa-30.mps 3967 18.49 3967 17.95 1.03

osa-60.mps 9118 104.7 9118 101.8 1.029

pds-02.mps 2805 0.6413 2805 0.6502 0.9862

pds-06.mps 11660 14.13 11660 13.86 1.019

pds-10.mps 22290 48.95 22290 50.32 0.9727

pds-20.mps 81197 481.2 81133 465.1 1.034

25FV47.SIF 10675 3.054 10675 3.076 0.9927

80BAU3B.SIF 4086 1.18 4086 1.184 0.9962

ADLITTLE.SIF 155 0.003016 155 0.003442 0.8762

AFIRO.SIF 20 0.000433 20 0.000461 0.9393
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Configuration-A Configuration-D

Name Iterations Time Iterations Time Slow-down

AGG2.SIF 164 0.006125 164 0.006764 0.9055

AGG3.SIF 173 0.006594 173 0.007155 0.9216

BANDM.SIF 746 0.0632 746 0.06863 0.9209

BEACONFD.SIF 164 0.004298 164 0.004518 0.9513

BLEND.SIF 93 0.002123 93 0.00234 0.9073

BNL1.SIF 3446 0.3759 3443 0.3868 0.9718

BNL2.SIF 6398 1.523 6398 1.536 0.9912

BOEING1.SIF 555 0.0291 555 0.03202 0.9087

BOEING2.SIF 183 0.004476 183 0.004747 0.9429

BORE3D.SIF 208 0.006709 208 0.007298 0.9193

BRANDY.SIF 466 0.02269 466 0.02545 0.8916

CAPRI.SIF 288 0.009512 288 0.01092 0.8713

CYCLE.SIF 14034 5.124 14034 5.169 0.9912

CZPROB.SIF 2336 0.2933 2336 0.3007 0.9753

D2Q06C.SIF 26402 25.64 26398 26.22 0.978

D6CUBE.SIF 1100 0.5642 1100 0.5811 0.9708

DEGEN2.SIF 1124 0.147 1124 0.1542 0.953

DEGEN3.SIF 9201 6.557 9201 6.61 0.9921

E226.SIF 708 0.03801 708 0.04129 0.9205

ETAMACRO.SIF 980 0.05054 980 0.05562 0.9086

FFFFF800.SIF 1350 0.09098 1350 0.09481 0.9596

FINNIS.SIF 368 0.01382 368 0.0153 0.9032

FIT1D.SIF 96 0.009465 96 0.009739 0.9719

FIT1P.SIF 1629 0.3351 1629 0.346 0.9687

FIT2D.SIF 202 0.1787 202 0.1803 0.9911

FIT2P.SIF 8191 14.37 8191 14.45 0.9941

FORPLAN.SIF 395 0.01781 395 0.0195 0.9135

GANGES.SIF 1356 0.1246 1356 0.1266 0.9845

GFRD-PNC.SIF 544 0.02977 544 0.03151 0.9447

GREENBEA.SIF 8757 3.649 8757 3.632 1.005
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Configuration-A Configuration-D

Name Iterations Time Iterations Time Slow-down

GREENBEB.SIF 14329 6.584 14329 6.525 1.009

GROW15.SIF 4854 0.7732 4854 0.7967 0.9705

GROW22.SIF 9835 2.496 9835 2.533 0.9853

GROW7.SIF 1465 0.1207 1465 0.1283 0.9412

ISRAEL.SIF 493 0.0233 493 0.02418 0.9636

KB2.SIF 84 0.001675 84 0.001895 0.8839

LOTFI.SIF 319 0.00911 319 0.01022 0.8914

MAROS-R7.SIF 4486 23.97 4486 24.17 0.9919

MAROS.SIF 7231 1.499 7231 1.531 0.9791

MODSZK1.SIF 731 0.0555 731 0.05851 0.9485

NESM.SIF 2339 0.2846 2339 0.2879 0.9887

PEROLD.SIF 4167 1.444 4167 1.487 0.9712

PILOT-JA.SIF 5509 3.478 5509 3.599 0.9664

PILOT-WE.SIF 7061 2.299 7061 2.338 0.9832

PILOT.SIF 8682 34.57 8782 36.73 0.9412

PILOT4.SIF 1286 0.288 1286 0.3062 0.9408

PILOTNOV.SIF 1626 0.5988 1626 0.629 0.952

QAP8.SIF 19217 32.91 19217 33.43 0.9845

RECIPELP.SIF 48 0.000879 48 0.000971 0.9053

SC105.SIF 122 0.003517 122 0.004124 0.8528

SC205.SIF 215 0.009347 215 0.01028 0.9092

SC50A.SIF 50 0.00111 50 0.001362 0.815

SC50B.SIF 49 0.001084 49 0.001358 0.7982

SCAGR25.SIF 631 0.02983 631 0.03112 0.9585

SCAGR7.SIF 208 0.004601 208 0.00496 0.9276

SCFXM1.SIF 551 0.02317 551 0.02453 0.9446

SCFXM2.SIF 1133 0.08375 1133 0.08695 0.9633

SCFXM3.SIF 1759 0.1833 1759 0.1848 0.9918

SCORPION.SIF 362 0.0122 362 0.01285 0.9494

SCRS8.SIF 742 0.03975 742 0.04252 0.9347
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Configuration-A Configuration-D

Name Iterations Time Iterations Time Slow-down

SCSD1.SIF 136 0.005368 136 0.00563 0.9535

SCSD6.SIF 400 0.02348 400 0.02611 0.8991

SCSD8.SIF 3113 0.4608 3113 0.4709 0.9785

SCTAP1.SIF 449 0.01468 449 0.01536 0.9553

SCTAP2.SIF 907 0.06747 907 0.07104 0.9497

SCTAP3.SIF 1234 0.1212 1234 0.1235 0.9814

SEBA.SIF 439 0.01703 439 0.02218 0.7681

SHARE1B.SIF 391 0.0143 391 0.01669 0.857

SHARE2B.SIF 195 0.004689 195 0.005061 0.9265

SHELL.SIF 599 0.03724 599 0.03953 0.9421

SHIP04L.SIF 378 0.01816 378 0.01996 0.9096

SHIP04S.SIF 381 0.01581 381 0.01655 0.9554

SHIP08L.SIF 685 0.06147 685 0.06393 0.9615

SHIP08S.SIF 647 0.04315 647 0.04483 0.9625

SHIP12L.SIF 1148 0.136 1148 0.1401 0.9705

SHIP12S.SIF 1089 0.0927 1089 0.09587 0.967

SIERRA.SIF 626 0.04839 626 0.05148 0.94

STAIR.SIF 462 0.1165 462 0.1401 0.8317

STANDATA.SIF 165 0.005971 165 0.006187 0.9651

STANDGUB.SIF 132 0.004857 132 0.005166 0.9402

STANDMPS.SIF 295 0.01167 295 0.01291 0.9042

STOCFOR1.SIF 99 0.00215 99 0.002394 0.8981

STOCFOR2.SIF 2249 0.4259 2249 0.4315 0.9872

STOCFOR3.SIF 17929 41.45 17929 41.48 0.9992

TRUSS.SIF 7739 4.658 7739 4.679 0.9954

TUFF.SIF 626 0.03487 626 0.03719 0.9377

VTP-BASE.SIF 346 0.01095 346 0.01187 0.9227

WOOD1P.SIF 625 0.2632 625 0.2739 0.9608

WOODW.SIF 2953 0.99 2953 0.9883 1.002



Appendix C

Low-level vector operation test results

C.1 Core i7-2640M tests

C.1.1 Vector addition
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Figure C.1: Performances of the unstable add vector implementa-
tions for three vectors
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Figure C.2: Performances of the stable add vector implementations,
using relative tolerance, for three vectors

1,000 10,000 100,000 1,000,000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000
L1 cache

3
L2 cache

3
L3 cache

3

n

M
FL

O
P

S

AVX
AVX, without cache

SSE2
SSE2, without cache

C++

Figure C.3: Performances of the stable add vector implementations,
using absolute tolerance, for three vectors
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Figure C.4: Performances of the unstable add vector implementa-
tions for two vectors
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Figure C.5: Performances of the stable add vector implementations,
using relative tolerances for two vectors
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Figure C.6: Performances of the stable add vector implementations,
using absolute tolerance, for two vectors
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Figure C.7: Performance comparison of our stable add implemen-
tations and the method of Orchard-Hays, with SSE2, using relative
tolerance, for three vectors
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Figure C.8: Performance comparison of our stable add implemen-
tations and the method of Orchard-Hays, with AVX, using relative
tolerance, for three vectors
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Figure C.9: Performance comparison of our stable add implemen-
tations and the method of Orchard-Hays, with SSE2, using relative
tolerance, for two vectors
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Figure C.10: Performance comparison of our stable add implemen-
tations and the method of Orchard-Hays, with AVX, using relative
tolerance, for two vectors
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Figure C.11: Performance ratios relative to the naive versions, with
3 vectors
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Figure C.12: Performance ratios relative to the naive versions, with
2 vectors

C.1.2 Dot product
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Figure C.13: Performances of the dot product implementations
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C.2 Xeon Platinum 8168 tests

C.2.1 Vector addition

1,000 10,000 100,000 1,000,000

0

5, 000

10, 000

15, 000

20, 000
L1 cache

3
L2 cache

3
L3 cache

3

n

M
FL

O
P

S

AVX-512
AVX-512, without cache

AVX
AVX, without cache

SSE2
SSE2, without cache

C++

Figure C.14: Performances of the unstable add vector implementa-
tions for three vectors, on Xeon Platinum
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Figure C.15: Performances of the stable add vector implementa-
tions, using relative tolerance, for three vectors, on Xeon Platinum
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Figure C.16: Performances of the stable add vector implementa-
tions, using absolute tolerance, for three vectors, on Xeon Platinum
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Figure C.17: Performances of the unstable add vector implementa-
tions for two vectors, on Xeon Platinum
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Figure C.18: Performances of the stable add vector implementa-
tions, using relative tolerances for two vectors, on Xeon Platinum
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Figure C.19: Performances of the stable add vector implementa-
tions, using absolute tolerance, for two vectors, on Xeon Platinum
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Figure C.20: Performance comparison of our stable add implemen-
tations and the method of Orchard-Hays, with SSE2, using relative
tolerance, for three vectors, on Xeon Platinum
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Figure C.21: Performance comparison of our stable add implemen-
tations and the method of Orchard-Hays, with AVX, using relative
tolerance, for three vectors, on Xeon Platinum
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Figure C.22: Performance comparison of our stable add implemen-
tations and the method of Orchard-Hays, with SSE2, using relative
tolerance, for two vectors, on Xeon Platinum
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Figure C.23: Performance comparison of our stable add implemen-
tations and the method of Orchard-Hays, with AVX, using relative
tolerance, for two vectors, on Xeon Platinum
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Figure C.24: Performance ratios relative to the naive versions, with
3 vectors, on Xeon Platinum
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Figure C.25: Performance ratios relative to the naive versions, with
2 vectors, on Xeon Platinum
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C.2.2 Dot product
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Figure C.26: Performances of the dot product implementations



Appendix D

Orchard-Hays and simplified adder tests

Orchard-Hays Simplified

Name Iterations Time Iterations Time Speedup Iteration speedup

cre-a.mps 9904 2.612 9904 2.425 1.077

cre-b.mps 119589 441.7 119589 422.6 1.045

cre-c.mps 11559 3.02 11559 2.844 1.062

cre-d.mps 100722 349.3 100722 341.8 1.022

ken-07.mps 3219 0.6797 3219 0.6714 1.012

ken-11.mps 22502 49.21 22502 47.77 1.03

ken-13.mps 101266 574.2 101266 550.2 1.044

osa-07.mps 889 0.559 889 0.506 1.105

osa-14.mps 2115 4.188 2115 3.974 1.054

osa-30.mps 3967 18.4 3967 16.83 1.093 1.093

osa-60.mps 9118 101.8 9118 99.57 1.022 1.022

pds-02.mps 2805 0.6491 2807 0.5895 1.101 1.102

pds-06.mps 11660 14.04 11230 12.58 1.116 1.075

pds-10.mps 22290 50.13 22746 49.24 1.018 1.039

pds-20.mps 81197 464.4 82198 459.2 1.011 1.024

25FV47.SIF 10675 3.088 10257 2.783 1.11 1.066

80BAU3B.SIF 4086 1.2 4086 1.117 1.075 1.075

ADLITTLE.SIF 155 0.002995 155 0.002878 1.041

AFIRO.SIF 20 0.000426 20 0.000421 1.012
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Orchard-Hays Simplified

Name Iterations Time Iterations Time Speedup Iteration speedup

AGG2.SIF 164 0.006222 164 0.005799 1.073 1.073

AGG3.SIF 173 0.006659 173 0.006318 1.054

BANDM.SIF 746 0.06559 746 0.06018 1.09

BEACONFD.SIF 164 0.004283 164 0.003961 1.081

BLEND.SIF 93 0.002064 93 0.001975 1.045

BNL1.SIF 3446 0.3803 3446 0.3536 1.075

BNL2.SIF 6398 1.53 6398 1.465 1.044

BOEING1.SIF 555 0.0299 555 0.02752 1.086

BOEING2.SIF 183 0.004508 183 0.004328 1.042 1.042

BORE3D.SIF 208 0.006667 208 0.006264 1.064 1.064

BRANDY.SIF 466 0.02313 466 0.02168 1.067

CAPRI.SIF 288 0.009483 288 0.008992 1.055

CYCLE.SIF 14034 5.197 15831 6.539 0.7948 0.8966

CZPROB.SIF 2336 0.2981 2336 0.2755 1.082

D2Q06C.SIF 26402 25.96 26049 24.59 1.056 1.042

D6CUBE.SIF 1100 0.5695 1100 0.5176 1.1 1.1

DEGEN2.SIF 1124 0.1501 1124 0.1408 1.066

DEGEN3.SIF 9201 6.62 9201 6.483 1.021

E226.SIF 708 0.03798 708 0.03607 1.053 1.053

ETAMACRO.SIF 980 0.05082 980 0.04842 1.05

FFFFF800.SIF 1350 0.09265 1350 0.08833 1.049

FINNIS.SIF 368 0.01399 368 0.0129 1.085 1.085

FIT1D.SIF 96 0.009433 96 0.00885 1.066

FIT1P.SIF 1629 0.3405 1629 0.3238 1.052

FIT2D.SIF 202 0.1781 202 0.1716 1.038

FIT2P.SIF 8191 14.44 8191 13.92 1.037

FORPLAN.SIF 395 0.01816 395 0.01715 1.059

GANGES.SIF 1356 0.1239 1356 0.1142 1.085

GFRD-PNC.SIF 544 0.0305 544 0.02775 1.099

GREENBEA.SIF 8757 3.579 9299 3.747 0.9551 1.014
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Orchard-Hays Simplified

Name Iterations Time Iterations Time Speedup Iteration speedup

GREENBEB.SIF 14329 6.725 14329 6.38 1.054

GROW15.SIF 4854 0.7719 4854 0.7443 1.037

GROW22.SIF 9835 2.497 9835 2.41 1.036 1.036

GROW7.SIF 1465 0.1231 1465 0.1154 1.067

ISRAEL.SIF 493 0.0237 497 0.02304 1.029 1.037

KB2.SIF 84 0.001655 84 0.001612 1.027

LOTFI.SIF 319 0.009172 319 0.008587 1.068

MAROS-R7.SIF 4486 24.02 4486 23.73 1.012 1.012

MAROS.SIF 7231 1.519 7231 1.452 1.046

MODSZK1.SIF 731 0.05513 731 0.0515 1.07

NESM.SIF 2339 0.2862 2698 0.2992 0.9565 1.103

PEROLD.SIF 4167 1.454 4129 1.36 1.069 1.059

PILOT-JA.SIF 5509 3.491 5509 3.324 1.05

PILOT-WE.SIF 7061 2.299 7061 2.213 1.039 1.039

PILOT.SIF 8682 34.86 9317 36.49 0.9554 1.025

PILOT4.SIF 1286 0.2913 1286 0.2733 1.066

PILOTNOV.SIF 1626 0.6002 1626 0.5753 1.043

QAP8.SIF 19217 32.9 19217 30.73 1.071

RECIPELP.SIF 48 0.000917 48 0.000868 1.056

SC105.SIF 122 0.003558 122 0.003443 1.033

SC205.SIF 215 0.00927 215 0.009001 1.03 1.03

SC50A.SIF 50 0.001119 50 0.001108 1.01

SC50B.SIF 49 0.001094 49 0.001077 1.016

SCAGR25.SIF 631 0.02981 631 0.02739 1.088

SCAGR7.SIF 208 0.004697 208 0.004605 1.02

SCFXM1.SIF 551 0.02351 551 0.02295 1.024

SCFXM2.SIF 1133 0.08426 1133 0.08114 1.038

SCFXM3.SIF 1759 0.1828 1759 0.1713 1.067

SCORPION.SIF 362 0.01213 362 0.01168 1.039

SCRS8.SIF 742 0.03953 742 0.03743 1.056
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Orchard-Hays Simplified

Name Iterations Time Iterations Time Speedup Iteration speedup

SCSD1.SIF 136 0.005385 136 0.004923 1.094

SCSD6.SIF 400 0.02351 400 0.02179 1.079

SCSD8.SIF 3113 0.4598 3113 0.4246 1.083

SCTAP1.SIF 449 0.01477 449 0.01371 1.078

SCTAP2.SIF 907 0.06805 907 0.06354 1.071

SCTAP3.SIF 1234 0.1239 1234 0.1106 1.121

SEBA.SIF 439 0.01728 439 0.01595 1.083 1.083

SHARE1B.SIF 391 0.01431 391 0.01366 1.048

SHARE2B.SIF 195 0.004642 195 0.004623 1.004

SHELL.SIF 599 0.03849 599 0.03417 1.127 1.127

SHIP04L.SIF 378 0.01864 378 0.01641 1.136

SHIP04S.SIF 381 0.01569 381 0.01422 1.103 1.103

SHIP08L.SIF 685 0.06218 685 0.05522 1.126

SHIP08S.SIF 647 0.0439 647 0.03897 1.126 1.126

SHIP12L.SIF 1148 0.1389 1148 0.124 1.12

SHIP12S.SIF 1089 0.09329 1089 0.0856 1.09 1.09

SIERRA.SIF 626 0.04867 626 0.04405 1.105

STAIR.SIF 462 0.1173 462 0.1119 1.048

STANDATA.SIF 165 0.006076 165 0.005433 1.118

STANDGUB.SIF 132 0.004834 132 0.004408 1.097 1.097

STANDMPS.SIF 295 0.01164 295 0.01069 1.09

STOCFOR1.SIF 99 0.002147 99 0.002175 0.9871

STOCFOR2.SIF 2249 0.4302 2249 0.4027 1.068

STOCFOR3.SIF 17929 41.79 17929 40.51 1.032

TRUSS.SIF 7739 4.713 7739 4.46 1.057

TUFF.SIF 626 0.03461 626 0.03313 1.045

VTP-BASE.SIF 346 0.01107 346 0.0106 1.044 1.044

WOOD1P.SIF 625 0.2672 625 0.2601 1.028

WOODW.SIF 2953 0.9926 2953 0.9234 1.075
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Some low-level vector implementations

E.1 SSE2

1 template <class WRITER>

2 void denseToDenseAddRelSSE2_temp (

3 const double * __restrict__ a,

4 const double * __restrict__ b,

5 double * c,

6 size_t count , double lambda,

7 double relTolerance) {

8 const size_t rem1 = count % 4;

9 size_t i;

10 __m128d tolerance = _mm_set_pd1(relTolerance);

11 uint64_t mask = 0x7fffffffffffffffULL ;

12 __m128d absMask = _mm_set1_pd(

13 *reinterpret_cast <double*>(&mask) );

14 __m128d mul = _mm_set1_pd(lambda);

15 for (i = 0; i < count - rem1; i += 4) {

16 // c = a + b * lambda

17 __m128d dataA1 = _mm_load_pd(&a[i]);

18 __m128d dataB1 = _mm_load_pd(&b[i]);

19 __m128d dataC1 = _mm_add_pd(dataA1,

20 _mm_mul_pd(dataB1, mul));

21 dataA1 = _mm_and_pd(dataA1, absMask);
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22 __m128d absC1 = _mm_and_pd(dataC1, absMask);

23 dataA1 = _mm_mul_pd(dataA1, tolerance);

24 __m128d lessResult1 = _mm_cmplt_pd(dataA1, absC1);

25 dataC1 = _mm_and_pd(dataC1, lessResult1);

26 WRITER::write(c + i, dataC1);

27

28 __m128d dataA2 = _mm_load_pd(&a[i+2]);

29 __m128d dataB2 = _mm_load_pd(&b[i+2]);

30 __m128d dataC2 = _mm_add_pd(dataA2,

31 _mm_mul_pd(dataB2, mul));

32 dataA2 = _mm_and_pd(dataA2, absMask);

33 __m128d absC2 = _mm_and_pd(dataC2, absMask);

34 dataA2 = _mm_mul_pd(dataA2, tolerance);

35 __m128d lessResult2 = _mm_cmplt_pd(dataA2, absC2);

36 dataC2 = _mm_and_pd(dataC2, lessResult2);

37 WRITER::write(c + i + 2, dataC2);

38 }

39 for (; i < count; i++) {

40 __m128d dataA = _mm_set1_pd(a[i]);

41 __m128d dataB = _mm_set1_pd(b[i]);

42 __m128d dataC = _mm_add_pd(dataA ,

43 _mm_mul_pd(dataB , mul));

44 dataA = _mm_and_pd(dataA , absMask);

45 __m128d absC = _mm_and_pd(dataC , absMask);

46 dataA = _mm_mul_pd(dataA , tolerance);

47 __m128d lessResult = _mm_cmplt_pd(dataA , absC);

48 dataC = _mm_and_pd(dataC , lessResult);

49 c[i] = dataC[0];

50 }

51 }

52

53 extern "C" void denseToDenseAddRelSSE2_cache (

54 const double * __restrict__ a,
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55 const double * __restrict__ b,

56 double * c,

57 size_t count , double lambda,

58 double relTolerance) {

59 struct CACHE_WRITER {

60 inline static void write(double * address ,

61 __m128d & value) {

62 _mm_store_pd(address , value);

63 }

64 };

65 denseToDenseAddRelSSE2_temp <CACHE_WRITER >(a, b, c,

66 count ,

67 lambda,

68 relTolerance);

69 }

70

71 extern "C" void denseToDenseAddRelSSE2_nocache (

72 const double * __restrict__ a,

73 const double * __restrict__ b,

74 double * c,

75 size_t count , double lambda,

76 double relTolerance) {

77 struct NOCACHE_WRITER {

78 inline static void write(double * address ,

79 __m128d & value) {

80 _mm_stream_pd(address , value);

81 }

82 };

83 denseToDenseAddRelSSE2_temp <NOCACHE_WRITER >(a, b, c,

84 count , lambda, relTolerance);

85 }

86

87 double denseToDenseDotProductStableSSE2 (
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88 const double * __restrict__ a,

89 const double * __restrict__ b,

90 size_t count) {

91 const size_t rem1 = count % 4;

92 size_t i = 0;

93 __m128d neg1 = {0, 0};

94 __m128d pos1 = {0, 0};

95 __m128d neg2 = {0, 0};

96 __m128d pos2 = {0, 0};

97 __m128d neg3 = {0, 0};

98 __m128d pos3 = {0, 0};

99 __m128d neg4 = {0, 0};

100 __m128d pos4 = {0, 0};

101 const __m128d zero = {0, 0};

102 for (i = 0; i < count - rem1; i += 4) {

103 // c = a + b * lambda

104 __m128d dataA1 = _mm_load_pd(&a[i]);

105 __m128d dataB1 = _mm_load_pd(&b[i]);

106 __m128d mul1 = _mm_mul_pd(dataA1, dataB1);

107 __m128d lessResult1 = _mm_cmplt_pd(zero, mul1);

108 neg1 = _mm_add_pd(neg1, _mm_and_pd(lessResult1 , mul1));

109 pos1 = _mm_add_pd(pos1,

110 _mm_andnot_pd(lessResult1 , mul1));

111

112 __m128d dataA2 = _mm_load_pd(&a[i + 2]);

113 __m128d dataB2 = _mm_load_pd(&b[i + 2]);

114 __m128d mul2 = _mm_mul_pd(dataA2, dataB2);

115 __m128d lessResult2 = _mm_cmplt_pd(zero, mul2);

116 neg2 = _mm_add_pd(neg2, _mm_and_pd(lessResult2 , mul2));

117 pos2 = _mm_add_pd(pos2,

118 _mm_andnot_pd(lessResult2 , mul2));

119 }

120 const size_t evenCount = count - (count % 2);
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121 for (; i < evenCount; i += 2) {

122 __m128d dataA = _mm_load_pd(&a[i]);

123 __m128d dataB = _mm_load_pd(&b[i]);

124 __m128d mul = _mm_mul_pd(dataA , dataB);

125 __m128d lessResult = _mm_cmplt_pd(zero, mul);

126 neg1 = _mm_add_pd(neg1, _mm_and_pd(lessResult , mul));

127 pos1 = _mm_add_pd(pos1, _mm_andnot_pd(lessResult , mul));

128 }

129

130 neg1 = _mm_add_pd(neg1, neg2);

131 neg3 = _mm_add_pd(neg3, neg4);

132 neg1 = _mm_add_pd(neg1, neg3);

133

134 pos1 = _mm_add_pd(pos1, pos2);

135 pos3 = _mm_add_pd(pos3, pos4);

136 pos1 = _mm_add_pd(pos1, pos3);

137

138 __m128d neg = {0, 0};

139 __m128d pos = {0, 0};

140 for (; i < count; i++) {

141 __m128d dataA = _mm_set_pd1(a[i]);

142 __m128d dataB = _mm_set_pd1(b[i]);

143 __m128d mul = _mm_mul_pd(dataA , dataB);

144 __m128d lessResult = _mm_cmplt_pd(zero, mul);

145 neg = _mm_add_pd(neg, _mm_and_pd(lessResult , mul));

146 pos = _mm_add_pd(pos, _mm_andnot_pd(lessResult , mul));

147 }

148 return neg1[0] + neg1[1] + neg[0] +

149 pos1[0] + pos1[1] + pos[0];

150 }
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E.2 AVX

1 template <class WRITER>

2 void denseToDenseAddRelAVX_temp (const double * __restrict__ a,

3 const double * __restrict__ b,

4 double * c,

5 size_t count , double lambda,

6 double relTolerance) {

7 const size_t rem1 = count % 8;

8 size_t i;

9 __m256d tolerance = _mm256_set1_pd(relTolerance);

10 uint64_t mask = 0x7fffffffffffffffULL ;

11 __m256d absMask = _mm256_set1_pd(

12 *reinterpret_cast <double*>(&mask) );

13 __m256d mul = _mm256_broadcast_sd (&lambda);

14 for (i = 0; i < count - rem1; i += 8) {

15 // c = a + b * lambda

16 __m256d dataA1 = _mm256_load_pd (&a[i]);

17 __m256d dataB1 = _mm256_load_pd (&b[i]);

18 __m256d dataC1 = _mm256_add_pd(dataA1,

19 _mm256_mul_pd(dataB1, mul ));

20 dataA1 = _mm256_and_pd(dataA1, absMask);

21 __m256d absC1 = _mm256_and_pd(dataC1, absMask);

22 dataA1 = _mm256_mul_pd(dataA1, tolerance);

23 __m256d lessResult1 = _mm256_cmp_pd(dataA1,

24 absC1 , _CMP_LT_OS);

25 dataC1 = _mm256_and_pd(dataC1, lessResult1);

26 WRITER::write(c + i, dataC1);

27

28 __m256d dataA2 = _mm256_load_pd (&a[i+4]);

29 __m256d dataB2 = _mm256_load_pd (&b[i+4]);

30 __m256d dataC2 = _mm256_add_pd(dataA2,

31 _mm256_mul_pd(dataB2, mul ));

32 dataA2 = _mm256_and_pd(dataA2, absMask);
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33 __m256d absC2 = _mm256_and_pd(dataC2, absMask);

34 dataA2 = _mm256_mul_pd(dataA2, tolerance);

35 __m256d lessResult2 = _mm256_cmp_pd(dataA2,

36 absC2 , _CMP_LT_OS);

37 dataC2 = _mm256_and_pd(dataC2, lessResult2);

38 WRITER::write(c + i + 4, dataC2);

39 }

40 for (; i < count; i++) {

41 __m256d dataA = _mm256_set1_pd(a[i]);

42 __m256d dataB = _mm256_set1_pd(b[i]);

43 __m256d dataC = _mm256_add_pd(dataA ,

44 _mm256_mul_pd(dataB , mul ));

45 dataA = _mm256_and_pd(dataA , absMask);

46 __m256d absC = _mm256_and_pd(dataC , absMask);

47 dataA = _mm256_mul_pd(dataA , tolerance);

48 __m256d lessResult = _mm256_cmp_pd(dataA ,

49 absC, _CMP_LT_OS);

50 dataC = _mm256_and_pd(dataC , lessResult);

51 c[i] = dataC[0];

52 }

53 }

54

55 extern "C" void denseToDenseAddRelAVX_cache (

56 const double * __restrict__ a,

57 const double * __restrict__ b,

58 double * c,

59 size_t count , double lambda,

60 double relTolerance) {

61 struct CACHE_WRITER {

62 inline static void write(double * address ,

63 __m256d & value) {

64 _mm256_store_pd (address , value);

65 }
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66 };

67 denseToDenseAddRelAVX_temp <CACHE_WRITER >(a, b, c, count ,

68 lambda,

69 relTolerance);

70 }

71

72 extern "C" void denseToDenseAddRelAVX_nocache (

73 const double * __restrict__ a,

74 const double * __restrict__ b,

75 double * c,

76 size_t count , double lambda,

77 double relTolerance) {

78 struct NOCACHE_WRITER {

79 inline static void write(double * address ,

80 __m256d & value) {

81 _mm256_stream_pd (address , value);

82 }

83 };

84 denseToDenseAddRelAVX_temp <NOCACHE_WRITER >(a, b, c, count ,

85 lambda,

86 relTolerance);

87 }

88 double denseToDenseDotProductStableAVX (

89 const double * __restrict__ a,

90 const double * __restrict__ b,

91 size_t count) {

92 const size_t rem1 = count % 8;

93 size_t i = 0;

94 __m256d neg1 = {0, 0, 0, 0};

95 __m256d pos1 = {0, 0, 0, 0};

96 __m256d neg2 = {0, 0, 0, 0};

97 __m256d pos2 = {0, 0, 0, 0};

98 __m256d neg3 = {0, 0, 0, 0};
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99 __m256d pos3 = {0, 0, 0, 0};

100 __m256d neg4 = {0, 0, 0, 0};

101 __m256d pos4 = {0, 0, 0, 0};

102 const __m256d zero = {0, 0, 0, 0};

103 for (i = 0; i < count - rem1; i += 8) {

104 // c = a + b * lambda

105 __m256d dataA1 = _mm256_load_pd (&a[i]);

106 __m256d dataB1 = _mm256_load_pd (&b[i]);

107 __m256d mul1 = _mm256_mul_pd(dataA1, dataB1 );

108 __m256d lessResult1 = _mm256_cmp_pd(zero,

109 mul1, _CMP_LT_OS);

110 neg1 = _mm256_add_pd(neg1, _mm256_and_pd(

111 lessResult1 , mul1));

112 pos1 = _mm256_add_pd(pos1, _mm256_andnot_pd (

113 lessResult1 , mul1));

114

115 __m256d dataA2 = _mm256_load_pd (&a[i + 4]);

116 __m256d dataB2 = _mm256_load_pd (&b[i + 4]);

117 __m256d mul2 = _mm256_mul_pd(dataA2, dataB2 );

118 __m256d lessResult2 = _mm256_cmp_pd(zero,

119 mul2, _CMP_LT_OS);

120 neg2 = _mm256_add_pd(neg2, _mm256_and_pd(

121 lessResult2 , mul2));

122 pos2 = _mm256_add_pd(pos2, _mm256_andnot_pd (

123 lessResult2 , mul2));

124 }

125 const size_t secondCount = count - (count % 4);

126 for (; i < secondCount; i += 4) {

127 __m256d dataA = _mm256_load_pd(&a[i]);

128 __m256d dataB = _mm256_load_pd(&b[i]);

129 __m256d mul = _mm256_mul_pd(dataA , dataB);

130 __m256d lessResult = _mm256_cmp_pd(zero,

131 mul, _CMP_LT_OS);
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132 neg1 = _mm256_add_pd(neg1, _mm256_and_pd(

133 lessResult , mul));

134 pos1 = _mm256_add_pd(pos1, _mm256_andnot_pd (

135 lessResult , mul));

136 }

137

138 neg1 = _mm256_add_pd(neg1, neg2);

139 neg3 = _mm256_add_pd(neg3, neg4);

140 neg1 = _mm256_add_pd(neg1, neg3);

141 pos1 = _mm256_add_pd(pos1, pos2);

142 pos3 = _mm256_add_pd(pos3, pos4);

143 pos1 = _mm256_add_pd(pos1, pos3);

144

145 __m256d neg = {0, 0, 0, 0};

146 __m256d pos = {0, 0, 0, 0};

147 for (; i < count; i++) {

148 __m256d dataA = _mm256_set1_pd(a[i]);

149 __m256d dataB = _mm256_set1_pd(b[i]);

150 __m256d mul = _mm256_mul_pd(dataA , dataB);

151 __m256d lessResult = _mm256_cmp_pd(zero,

152 mul, _CMP_LT_OS);

153 neg = _mm256_add_pd(neg, _mm256_and_pd(lessResult , mul));

154 pos = _mm256_add_pd(pos, _mm256_andnot_pd (

155 lessResult , mul));

156 }

157 return neg1[0] + neg1[1] + neg1[2] + neg1[3] + neg[0]

158 + pos1[0] + pos1[1] + pos1[2] + pos1[3] + pos[0];

159 }
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E.3 AVX-512

1 template <class WRITER>

2 void denseToDenseAddRelAVX512_temp (const double * __restrict__ a,

3 const double * __restrict__ b,

4 double * c,

5 size_t count , double lambda,

6 double relTolerance) {

7 const size_t rem1 = count % 16;

8 size_t i;

9 __m512d tolerance = _mm512_set1_pd(relTolerance);

10 __m512d zero = _mm512_set1_pd (0.0);

11 __m512d mul = _mm512_set1_pd(lambda);

12 for (i = 0; (i + 0) < count - rem1; i += 16) {

13 // c = a + b * lambda

14 __m512d dataA1 = _mm512_load_pd (&a[i]);

15 __m512d dataB1 = _mm512_load_pd (&b[i]);

16 __m512d dataC1 = _mm512_add_pd(dataA1,

17 _mm512_mul_pd(dataB1, mul ));

18 dataA1 = _mm512_abs_pd(dataA1 );

19 __m512d absC1 = _mm512_abs_pd(dataC1);

20 dataA1 = _mm512_mul_pd(dataA1, tolerance);

21 __mmask8 lessResult1 = _mm512_cmp_pd_mask (dataA1,

22 absC1 , _CMP_LT_OS);

23 dataC1 = _mm512_mask_mov_pd (zero, lessResult1 , dataC1);

24 WRITER::write(c + i, dataC1);

25

26 __m512d dataA2 = _mm512_load_pd (&a[i + 8]);

27 __m512d dataB2 = _mm512_load_pd (&b[i + 8]);

28 __m512d dataC2 = _mm512_add_pd(dataA2,

29 _mm512_mul_pd(dataB2, mul ));

30 dataA2 = _mm512_abs_pd(dataA2 );

31 __m512d absC2 = _mm512_abs_pd(dataC2);

32 dataA2 = _mm512_mul_pd(dataA2, tolerance);
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33 __mmask8 lessResult2 =

34 _mm512_cmp_pd_mask (dataA2, absC2 , _CMP_LT_OS);

35 dataC2 = _mm512_mask_mov_pd (zero, lessResult2 , dataC2);

36 WRITER::write(c + i + 8, dataC2);

37 }

38 for (; i < count; i++) {

39 __m512d dataA = _mm512_set1_pd(a[i]);

40 __m512d dataB = _mm512_set1_pd(b[i]);

41 __m512d dataC = _mm512_add_pd(dataA ,

42 _mm512_mul_pd(dataB , mul));

43 dataA = _mm512_abs_pd(dataA);

44 __m512d absC = _mm512_abs_pd(dataC);

45 dataA = _mm512_mul_pd(dataA , tolerance);

46 __mmask8 lessResult =

47 _mm512_cmp_pd_mask (dataA , absC, _CMP_LT_OS);

48 dataC = _mm512_mask_mov_pd (zero, lessResult , dataC);

49 c[i] = dataC[0];

50 }

51 }

52

53 extern "C" void denseToDenseAddRelAVX512_cache (

54 const double * __restrict__ a,

55 const double * __restrict__ b,

56 double * c,

57 size_t count , double lambda,

58 double relTolerance) {

59 struct CACHE_WRITER {

60 inline static void write(double * address ,

61 __m512d & value) {

62 _mm512_store_pd (address , value);

63 }

64 };

65 denseToDenseAddRelAVX512_temp <CACHE_WRITER >(a, b, c, count ,
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66 lambda,

67 relTolerance);

68 }

69

70 extern "C" void denseToDenseAddRelAVX512_nocache (

71 const double * __restrict__ a,

72 const double * __restrict__ b,

73 double * c,

74 size_t count , double lambda,

75 double relTolerance) {

76 struct NOCACHE_WRITER {

77 inline static void write(double * address ,

78 __m512d & value) {

79 _mm512_stream_pd (address , value);

80 }

81 };

82 denseToDenseAddRelAVX512_temp <NOCACHE_WRITER >(a, b, c, count ,

83 lambda,

84 relTolerance);

85 }

86

87 double denseToDenseDotProductStableAVX512 (

88 const double * __restrict__ a,

89 const double * __restrict__ b,

90 size_t count) {

91 const size_t rem1 = count % 16;

92 size_t i = 0;

93 __m512d neg1 = {0, 0, 0, 0, 0, 0, 0, 0};

94 __m512d pos1 = {0, 0, 0, 0, 0, 0, 0, 0};

95 __m512d neg2 = {0, 0, 0, 0, 0, 0, 0, 0};

96 __m512d pos2 = {0, 0, 0, 0, 0, 0, 0, 0};

97 const static __m512d zero = {0, 0, 0, 0, 0, 0, 0, 0};

98 for (i = 0; i < count - rem1; i += 16) {
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99 // c = a + b * lambda

100 __m512d dataA1 = _mm512_load_pd (&a[i]);

101 __m512d dataB1 = _mm512_load_pd (&b[i]);

102 __m512d mul1 = _mm512_mul_pd(dataA1, dataB1 );

103 __mmask8 lessResult1 = _mm512_cmp_pd_mask (

104 zero, mul1, _CMP_LT_OS);

105 neg1 = _mm512_mask_add_pd (neg1, lessResult1 , neg1, mul1);

106 pos1 = _mm512_mask_add_pd (pos1, ~lessResult1 , pos1,

107 mul1);

108

109 __m512d dataA2 = _mm512_load_pd (&a[i + 8]);

110 __m512d dataB2 = _mm512_load_pd (&b[i + 8]);

111 __m512d mul2 = _mm512_mul_pd(dataA2, dataB2 );

112 __mmask8 lessResult2 = _mm512_cmp_pd_mask (

113 zero, mul2, _CMP_LT_OS);

114 neg2 = _mm512_mask_add_pd (neg2, lessResult2 , neg2, mul2);

115 pos2 = _mm512_mask_add_pd (pos2, ~lessResult2 , pos2,

116 mul2);

117 }

118 const size_t secondCount = count - (count % 8);

119 for (; i < secondCount; i += 8) {

120 __m512d dataA = _mm512_load_pd(&a[i]);

121 __m512d dataB = _mm512_load_pd(&b[i]);

122 __m512d mul = _mm512_mul_pd(dataA , dataB);

123 __mmask8 lessResult = _mm512_cmp_pd_mask (

124 zero, mul, _CMP_LT_OS);

125 neg1 = _mm512_mask_add_pd (neg1, lessResult , neg1, mul);

126 pos1 = _mm512_mask_add_pd (pos1, ~lessResult , pos1, mul);

127 }

128

129 neg1 = _mm512_add_pd(neg1, neg2);

130 pos1 = _mm512_add_pd(pos1, pos2);

131
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132 for (; i < count; i++) {

133 __m512d dataA = _mm512_set1_pd(a[i]);

134 __m512d dataB = _mm512_set1_pd(b[i]);

135 __m512d mul = _mm512_mul_pd(dataA , dataB);

136 __mmask8 lessResult = _mm512_cmp_pd_mask (

137 zero, mul, _CMP_LT_OS);

138 neg1 = _mm512_mask_add_pd (

139 neg1, lessResult & 1, neg1, mul);

140 pos1 = _mm512_mask_add_pd (

141 pos1, (~lessResult) & 1, pos1, mul);

142 }

143 double posScalar = _mm512_reduce_add_pd (pos1);

144 double negScalar = _mm512_reduce_add_pd (neg1);

145 return posScalar + negScalar;

146 }



Appendix F

Abstract in Japanese

シンプレックス法は、線型計画問題(LO)を解くために使用される最重要アルゴリズム
の１つです。1950年以降シンプレックス法は、コンピューターハードウェアやアルゴ
リズムの開発と密接に関わりながら発展してきました。初期バージョンでは、小規模

な問題しか解決できませんでしたが、現在のソフトウェアでは、膨大な数の決定変数

や制限があっても問題を処理できることがあります。ですが、大規模な最適化モデ

ルの解決は、いくつかの理由により困難なことがあります。一部の理由として、ソ

リューションアルゴリズムで必要な浮動小数点演算を使わざるを得ないことが挙げら

れます。これらの問題を軽減する大きな進歩がありましたが、解決の妨げとなるモデ

ルに直面することはいまだ珍しくありません。また、スケーリング、摂動、非退化方

法などのさまざまな数値的困難を伴うモデルに対処するための目覚ましい進歩もあり

ました。これら方法によってタスク全体の完了が大きく遅れないことが重要です。で

すが、従来の数表現では処理できない数字的なエラーがあるため、現在のソフトウェ

アであってもすべての線型計画問題を正しく解決することはできません。既存のソフ

トウェアを使っても、数値的困難のため、あるいは最適化に収束できないため、問題

の解決に至らないといったような残念な結果になることがあります。ですがこれが

きっかけとなり、デフォルトの浮動小数点数表現では特定のモデルが解決できないこ

とを検出できる自動機能を、弊社のソフトウェアであるPannon Optimizerに組み込む
ことになりましたので、より正確な演算に切り替える価値はあります。プログラム出

力の正確性に対する疑念も軽減されるのでユーザーにとっては大きな助けとなりま

す。また、条件分岐を含まない安定した加算器を開発し、ドット積を実装したため、

計算のオーバーヘッドが低くなります。さらに、シンプレックス法の時間のかかる初

歩的な手順の１つである加速法についても説明いたします。数値アルゴリズムに関し

て議論する際は、速度効率に関する情報もご提供します。
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