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Preface

In this thesis, we will discuss algorithmic trading in which the financial assets used during

investments have prices with long memory.

Trading refers to the sale and purchase of financial assets. These financial assets may

be simple, such as the purchase of bonds or stocks, or they may be more complex; these

are called derivatives. In algorithmic trading, the choice of which asset to buy and when to

buy it, is not made directly by the investor. Instead, the choice is made by an algorithm,

which may be written by the investor or another individual. These algorithms are almost

invariably run on computers. Trading involves the transaction of immense sums. The wealth

(asset under management, AUM) handled by the ten largest investment companies in 2018

was over 28 trillion US dollars, that is, more than 28 thousand billion. The importance

of algorithmic trading is also demonstrated by Kissel’s 2013 study [1], which describes an

increase in the proportion of algorithmic trading from 15% to 85% between 2003 and 2012.

A subset of algorithmic trading is high-frequency trading (HFT), in which decisions on

trading are made chronologically close together. There is no officially accepted definition

for HFT; even daily transactions may be defined as such, while in many cases, only trading

taking place at least every minute or second is considered high-frequency. According to

another definition, the trading decision and its execution happen simultaneously without

outside interference. Although we cannot speak of exact numbers, in all probability, at least

a third of all trading is high-frequency.

Stock price processes are mathematical processes which determine the price of a financial

asset at a given time. Clearly, this is an idealized definition, since a given product may be

purchased by many buyers simultaneously and from different suppliers. Therefore, in reality,

several values may be attributed to it, but we will disregard this fact. The uncertainty of

the asset price can be handled by characterizing it with a random variable rather than by a

given value.

The past decades have seen an enormous amount of statistical examination of the asset

price as time series. As to be expected, the statistical examinations corroborate that the

asset price’s past values (or their changes or ”time derivatives”) affect the current asset price
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and its increments. By 1971, Mandelbrot had already postulated that the increments of the

price process not only have memory, but in fact, possess long memory. He used fractional

Brown movement to model the price process, which was, however, mathematically difficult

to fit with the concepts of the time. Subsequently, in 1977 [2], he showed using statistical

methods on historical prices that the increments of the price process do indeed have long

memory. To determine this, he examined the daily price of 200 stocks.

Thus, during trading, products are purchased and sold which can be best characterized by

their price (or perhaps the purchased amount). Since asset price is mathematically modelled

as a stochastic process and the investment is goal-oriented, i.e. maximizing a consumption

or utility factor, the topic of investment theory belongs to the subject of control theory

or decision theory. Within that, it belongs to stochastic, non-Markovian decision theory.

Investment problems can be described corresponding to control theory: asset price processes

can be described by the ”control system” Markovian processes, where the controller is the

investor’s decision on the type and quantity of product to purchase, while the objective

function is the investor’s utility function. While we focus primarily on log-optimal utility

functions in the scope of this thesis, we will also come to interesting conclusions on risk-

neutral investments. In control theory, the Markovian problem has well-known algorithms

that can find the optimal decision in most cases. This cannot be said for non-Markovian

problems. For example, it has been established for almost 30 years now that given log-

optimal investments– to word it simply– if the increase of the asset price is both stationary

and ergodic, then there exists an optimal investment [3]. It is easy to test the stationarity,

but proving ergodicity is more problematic.

Concerning the practical aspects of investment, it is clear that despite the obvious pres-

ence of strong memory and a paltry mathematical toolbox, trading algorithms are created

and used by many. This is indicated by its trading revenue and also by the fact that there

are more than 20,000 hits on Amazon books that contain the terms ”investment” and ”fi-

nancial.” Real trading algorithms attempt to handle past information despite severe lack of

constructive theoretical results.

The main goal of this thesis is to bring the two worlds of theory and application closer:

we will define long memory processes that are realistic and have statistical characteristics

important for us, such as long memory in their asset price processes. Furthermore, we will

find specific algorithms that optimize the objective of the investor.

In the following, we will assume the reader has an understanding of the basics of proba-

bility theory, including the meaning of expected value, correlation, autocorrelation, standard

deviation, and variance. In the discussion, other moments will be considered as well, which
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will be defined in the respective sections. Expected value has an especially important role in

financial mathematics, therefore a separate chapter is dedicated to its precise interpretation

in the Appendix. Nevertheless, the entirety of this thesis is comprehensible without these.

The research goals of this thesis can be found in Section 1.6 at the end of Chapter 1,

after the introduction of basic investment concepts.
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Chapter 1

Introduction

Before we introduce our methodology in the next chapter, in this one we provide

the reader with the basic concepts of investment theory – focusing only on the

relevant issues for us. The notations that we use here are changed in Chapter 6

but otherwise it is consistently used throughout the whole dissertation.

1.1 Investment decisions

1.1.1 Possible Objectives of an Investment

There are several different types of algorithmic investments depending on their objectives.

For example, one objective may be to decrease the market impact; typically, this is necessary

when there are larger purchases. In this case, the investor buys the desired amount in several

smaller purchases. In this way, the total transaction fee is lower (for example, a larger

purchase may increase the price). This is almost invariably necessary during high frequency

trading.

A frequent objective is following benchmarks, in which we expect the performance of

a portfolio to ”follow” the performance of a benchmark. The indices (or stock indices) of

the financial market are products that aim to measure specific states of the market; usually,

these serve as the benchmarks. Such an index is the S&P 500 index, which measures the

joint performance of its 500 stocks. Commonly, indices measure the performance of select

market segments. In passive investments, the investor’s objective is that the portfolio’s value

changes correspond to that of the index.

Likewise, another frequent goal is the investor’s desire to maximize their expected wealth

while taking into account the risk. Broadly speaking, the goal of the investor is maximizing

some type of utility function. At the same time, it is up to each investor how they take risk

into account. In this dissertation, log-utility function and risk neutral investment will be

1
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discussed.

Hereafter, we will assume that the investor’s goal is exclusively to maximize a given

utility function.

1.1.2 Early results

Modern portfolio optimization started with Harry Markowitz’s theory [4], barely 20 years

after Kolmogorov had laid the foundations of probability theory. Markowitz handled risk

simply as the variance of the return and targeted to maximize expected return subject to a

constant variance. For this theory Markowitz won a Nobel prize in Economics sciences in

1990. While this theory is easy to use in practice, thanks to the fact that it operates with

simple moments that can be easily estimated, it is still overly simplistic.

In 1956, J. L. Kelly formulated a strong connection between information rate and port-

folio theory [5]. A better approach is to maximise the expected logarithm (called utility

function) of the portfolio value. This idea originated from Daniel Bernoulli, see [6]. Fa-

mous investors who used log-optimal investments include Jim Simons and Warren Buffett

from Renaissance Medallion as well as the economist John Maynard Keynes. While plain

expectation is a generalization of the arithmetic mean, the logarithm transforms it into a

geometric mean which is more sensitive to the fluctuations in the future value, i.e. to risk.

Log-optimal portfolio beats every other portfolio in the long run, see e.g. Chapter 16 of [7].

1.1.3 Portfolio

A portfolio is a collection of financial assets (e.g. stocks, bonds) held by an investor whose

intention is to optimise some kind of benefit from this ownership. The most important

feature of a portfolio is its value, which we refer to as the wealth of the investor, denoted at

time t by Wt. The wealth of an investor, or the value of their portfolio, is given by the sum

of the financial assets possessed by the investor in the portfolio.

Financial assets may be fundamentally classed into two groups: they can be characterized

by their price or by their deterministic or stochastic processes. Since stochastic processes

typically have variance and variance is unpredictable in the future, i.e. risk, they are usually

termed riskless and risky assets. An example of a deterministic process is a bond or cash;

its value at t is Bt. For the stochastic process, our primary example is stock – St.

The evolution of stock prices in time can be regarded as a stochastic dynamical system

where the state variables are described by e.g. a (stochastic) differential equation. Such

models implicitly assume that it is enough to know the structure of the dynamics and the

actual state to make calculations for the future (i.e. the Markovian property is assumed).

The theory of portfolio management is well-studied in this case, where the current state

2
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(or the past few states) contains all the information we can have about the distribution of

future prices. On the other hand, why shouldn’t we take into account all the information

from past data, as empirical evidence suggests (see e.g. [8, 9, 10, 11, 12])?

In the following sections we will see that it is more convenient to use the log-return

process Ht, i.e. the increments of the log-price instead of using the stock price. We will

mostly consider non-Markovian dynamics. For an overview about the statistical properties

of prices, see [13] and the following sections. The most important property for us is the

structure of time correlation which was studied already in the 90s, see e.g. [10, 11, 12].

We use discrete time models and the time parameter will be t ∈ Z or t ∈ N. For

simplicity, we deal only with one risky and one riskless asset. We denote the stock (risky

asset) price by St and the bond (riskless asset) price by Bt at time t, with initial prices s0

and b0, respectively.

Investment starts at t = 0 and the bond price evolves in time deterministically as Bt =

b0(1 + r)t, t ∈ N, where r ≥ 0 is the fixed interest rate. It is convenient to describe the stock

dynamics by its log-return

Ht := log(St/St−1) (1.1)

whose statistical properties will be discussed in detail in the following sections. Sometimes

we refer to log-return as return to avoid the multiple use of a word if its meaning is clear.

Return is defined as Rt := (St − St−1)/St−1 = St/St−1 − 1. That is 1 + Rt = exp(Ht).

First order Taylor-expansion of the exponential function say exp(x) ≈ 1 + x if |x| is small.

Therefore on a daily time-scale return and log-return is very close to each other.

The investor’s strategy will be described by a [0, 1]-valued adapted process πt, t ∈ N
which represents the proportion of wealth allocated to the stock. More precisely, for initial

wealth W0 = w0 is a constant and w0 > 0 and for any strategy πt, the investor’s wealth W π
t

at time t follows the evolution

W π
t = W π

t−1

(
(1− πt−1)

Bt
Bt−1

+ πt−1
St
St−1

)
, t ∈ N. (1.2)

In our case, (1.2) is the most covnenient form of the evolution of wealth in time. This is

called compounded capital, because it is ’compounded’ by the returns (St/St−1 and Bt/Bt−1).

In the following chapters we always define the processes St and Bt explicitly.

There is another formalism which derives from its continuous counterpart, which uses

additive evolution instead of the multiplicative we saw in (1.2). The portfolio value in this

case is

W∆
t −W∆

t−1 = ∆S
t−1(St − St−1) + ∆B

t−1(Bt −Bt−1), (1.3)

where ∆
S/B
t denotes the position of the asset S or B at time t − 1, in other words, the

3
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number of asset in the position at time t− 1.

Naturally, both equations are the same and could be used interchangeably, but they are

more suitable in different contexts. With the choice

πt =
∆S
t−1St

Wt−1
(1.4)

we end up in the same portfolio. The multiplicative formalism is especially useful when

the utility function is logarithmic. Moreover, it is a more natural description, because asset

prices typically increase or decrease exponentially. Usually, economists are interested in what

percentage the price changed relative to a former value (return) and not the difference, the

absolute change. On the other hand, the latter one is more often used in the 1) continuous-

time case and 2) when friction is involved. Also, it is easier to understand (1.3), the change

of the portfolio value comes from the changes in the assets’ prices.

1.1.4 Self-financing, admissibility, short-long position

Portfolios can be grouped on the basis of whether they use external sources during the

investment or solely the assets in the portfolio. External sources can be other financial

assets that are not included in the portfolio or sources from investors and lenders.

We refer the reader for further reading on the following topic to consult [14].

In so-called self-financing portfolios, investors redistribute their wealth in each instance

when they make a decision.

Definition 1.1.1. A portfolio W∆
t is called self-financing if it can be written in the form of

(1.3).

An equivalent definition.

Definition 1.1.2. A portfolio W π
t , according to (1.2), is called self-financing.

When investors sells more stock than they have, or buy more than they could, it is called

short, respectively, long. Short and long position is when πt < 0 and πt > 1. In course of

this document we assume that investor never holds short or long position, that is, πt ∈ [0, 1]

and uses self-financing portfolio.

As a result of excluding external effects, we can focus on our aim, that is, the relation

of the memory of the stock prices and the optimal decision.

Yet, we have not defined the dynamics of the stock prices which would define the prob-

ability space, but let us suppose that the stock price St is defined on a filetered probability

space (Ω,F , {Ft}t∈Z,P).

4

DOI:10.15774/PPKE.ITK.2021.009



Definition 1.1.3. Let the trading strategy {πt}t∈N generate the portfolio W π
t . The strategy

is called admissible if it satisfies three conditions

1. The stochastic process πt is adapted to the filtration F . That is, the investor uses only

information up to time t to make a decision.

2. The generated portfolio W π
t ≥ 0. This requirement is also called limited liability.

3. The created portfolio is self-financing.

1.1.5 Arbitrage

Arbitrage is the possibility of realizing profit without taking risk. It is usually a consequence

of mispriced assets, i.e. market inefficiency. Many investors try to use arbitrage opportunities

to take advantage of this ’glitch’ in financial industry. If arbitrage exists and we find it, there

is nothing to do about it: riskless profit would solve the problem of investment decisions.

However, in efficient market it is always necessary to take risk into consideration.

There are several different types of arbitrage.

Definition 1.1.4. An admissible strategy πt is called an arbitrage strategy, if

W π
0 = 0 and P(W π

t ≥ 0) = 1, P(W π
t > 1) > 0

for some t > 0.

This is clearly not the case when applying time evolution (1.2), since W0 = 0 would

result in a portfolio Wt = 0, t > 0 almost sure.

We only need arbitrage-free market to secure that there is no profit without taking risk,

hence making the investment problem well-posed. The continuous case is more difficult, in

Chapter 6 we handle it.

1.1.6 Liquidity

Liquidity and other related effects like transaction costs are omitted here, except in Chapter

6 where these effects are in the spotlight.

In Chapters 4 and 5 we assume that invostors can buy any stocks at any time without

the obligation of paying for the transaction and we also assume that any trading does not

have effect on stok prices.

The question we would like to answer is complex enough even under these assumptions.

For the same reason, when we include illiquidity in Chapter 6, we have to make several

assumptions to be able to find optimal strategy.

5
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1.2 Utility functions and performance measures

Since stock prices are random variables in time, hence the future wealth of the investor, it is

obvious that we have to transform the outcome of the investment into some ordered set to

be able distinguish which is better. It follows that a well-chosen expected value can describe

the problem. Actually, the idea of the expected value was probably more important in the

past than probabiliy. Probability as a number between 0 and 1 was only mentioned for the

first time in 1713 by Jacob Bernoulli [15], while expected outcome of gambling gams was

used long before.

The first remarkable result from the 20th century about performance measures belongs

to John von Neumann and Oskar Morgenstern [16] who established modern utility theory

by giving axiomatic description to preferences. Their theory helps to construct well-defined

utility functions, which are the expected value of some function of the outcome of the

investment. Beside this, there is another extensively studied branch of performance meause,

the so-called mean-variance portfolio theory by Harry Markowitz [4]. In this theory the

risk is described by the variance of the investment profit and the goal is to maximize the

expected profit minus the risk. A few decades later in 1979 a new approach, prospect theory,

was born by Daniel Kahneman and Amos Tversky. Prospect theory based on the idea that

risk aversion is asymmetric. This concept uses loss aversion which means that investors

prefer avoiding losses to acquiring equivalent gains.

One of the main differences between investors is how sensitive they are to risk. Risk

sensitivity usually is described by risk aversion. In modern portfolio theory risk aversion is

regulated by how much the investor takes into account the variance as a penalty, while in

utility theory, risk aversion is described by which function they choose as utility function.

At first let us assume, the investor is interested in optimizing the objective function at

a given maturity/horizon time T . Let u(x) be a real-valued and order-preserving function,

called utility function (see more on its existence [17]). The investor’s objective is to find a

strategy {πt}Tt=1 that maximizes

E[u(W π
T )]. (1.5)

Some popular choices are the power utility u(x) = xθ/θ, for some θ < 1 and θ 6= 0 or the

logarithmic utility u(x) = log(x). Risk-aversion is controlled by θ.

Some investors have no preferences about risk, in this case we have a risk-neutral invest-

ment problem. The objective function is simply

E[W π
T ], (1.6)

and the utility function is u(x) = x. This problem can be easily ill-posed and leads to

6
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infinite utility. In Chapter 6, this investment problem will be investigated in the presence

of illiquidity effect which makes the problem well-posed.

If there are no risk preferences and one wishes to use the risk-neutral setup, it is still

desirable to qualify somehow the portfolio’s performance. William F. Sharpe1 introduced a

performance measure in [18] and detailed in [19]. The ratio is defined in the case of zero

risk-free return as

SR :=
E[W π

T ]√
V ar(W π

T )
(1.7)

at a time horizon T > 0. Later other similar measures have been introduced similar to the

Sharpe ratio, like the Sortino rate or the Treynor rate. These are more helpful in more

economics-related problems.

1.2.1 Log-optimal investments

In the last 50 years the theory of log-optimal investments has been developed in a wide range

of models, but with very little practical implication for the non-Markovian case. The hand-

book Maclean et al. [20], collected many important papers concerning the topic. We also

mention the milestone paper [3], who characterized the log-optimal portfolio for stationary

and ergodic log-return processes. However, this is a theoretical result that cannot be easily

implemented in general.

Practical results for log-optimal investments in a distribution-free setting were investi-

gated by Györfi et al., where the optimal strategy is achieved by machine learning methods,

for a survey, see [21].

As opposed to the finite-horizon problem, infinite horizon problems describe the ”av-

erage” behavior of the investment over time. We also refer to this kind of investments

as long-term investments. In the case of logarithmic utility function, the infinite horizon

problem is to maximize the time-average of the utility

lim inf
T→∞

1

T
E [log(W π

T )] . (1.8)

In the next chapters our approach, in contrast to the distribution-free solution, uses

parametric models, where general properties of stock prices can be taken into consideration.

Also, with parameters we are able to characterize the memory effect in the models in a

simple way. We are also able to characterize how the optimal strategy or the value function

depends on the memory.

1Harry Markowitz, William F. Sharpe and Daniel Kahneman were awarded the Nobel Prize in Economics.
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1.2.2 Growth, Annual yield

This is strongly connected to the log-optimal portfolios which are also called growth-optimal

portfolios. The growth rate is only interpretable if wealth grows exponentially in time. If

the limit exists, the growth rate G is defined as

lim
T→∞

1

T
log(W π

T ) = G. (1.9)

Usually it is very difficult to prove that this limit exists, in Chapter 3 and 4 we look at this

problem.

Nevertheless, the growth rate G is a very practical concept, too. Mathematically loosely

speaking

W π
T ≈ exp(GT ). (1.10)

Annual yield (AY ) (or yearly interest rate) equals to exp(250G)− 1; that is, how much

the portfolio’s value grows in one year with growth-rate G.

When there are more than one stock or there are more realizations in a simulation, it is

reasonable to speak of Mean Annual Yield (MAY):

MAY :=
∑
i

exp(250G(i))− 1, (1.11)

where the sum goes takes every realization i, G(i) is the growth of the i-th realization of

the asset price process. (In financial practice it can also refer to the i-th asset of a portfolio

with multiple assets, where MAY measure the performance of the whole portfolio.)

1.3 Memory

The main evidence for assuming non-Markovian dynamics for the log-return process of a

stock price is coming from its time-correlation structure. It was already studied in the 90s,

see e.g. [10, 11, 12].

Past information in the return is not presented in a linear relationship, as the autocor-

relation function of Ht makes it clear. On the other hand, considering the autocorrelation

function of the absolute log-return |Ht| reveals how strong the memory effect really is. Most

stock prices’ returns have significant time-correlation if we disregard from returns’ sign. The

same true if one inspects the autocorrelation of the squared return H2
t or any positive power

|Ht|p, p > 0.

The covariance of two random variables X and Y with finite second moments is defined

8
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as

Cov(X,Y ) := E [(X − E[X])(Y − E[Y])] . (1.12)

Autocorrelation of a stationary stochastic process Xt with finite second moment is defined

as

γX(τ) ≡ ACFXt(τ) := Cov(Xt+τ , Xt)/Cov(Xt). (1.13)

An important property of correlation that it is only able to detect linear relationship between

the variables but not a more complex structure.

Since memory effect is the cornerstone of the present thesis, therefore we investigated

the daily returns of those 1250 stocks from New York Stock Exchange that have the most

significant time-correlation structure. Of course, there are some stock returns without strong

memory effect, but most of them do have. The webpage http://www.long-memory.com/

collected important papers about long memory, especially in the case of financial problems

until 2005.

Figures in 1.1 shows the evidence of long memory in log-returns. Usually the autocorre-

lation of the return Ht is insignificant, while for the absolute return |Ht| it is significant.

A plot is called log-log plot if both axes are on logarithmic scales. This display mode

helps to reveal power-law relationships, because a linear function on a log-log plot is equal

to a power function on a linear-linear plot (when there is no scaling of the axes). A log-

lin plot refers to the case, when only the vertical axis is rescaled logarithmically. A linear

relationship on a log-lin plot suggests exponential behavior.

Most stock returns are similar to the Figure 1.1 (a) when the autocorrelation of |Ht|
are significant and decays with a power-law or similar to the Figure 1.1 (c) when power

law decreasing transforms into an exponential decay. It is also possible to have a better

exponential decay fit like in the case of Figure 1.1 (b).

1.4 Leverage effect

The name leverage comes from the name of the simple machine ’lever’ used in physics to

amplify one’s strength to move a physical object. In finance, it refers to a technique where

investors amplify the expected returns of their investments in some way. Speaking of firms,

it usually means that a company purchases borrowed funds (debt) in the interest of buying

financial assets. While this activity increases the expected return, it decreases the risk.

In financial mathematics it is commonly called as leverage effect and described slightly

differently. Leverage effect is defined as the correlation between returns and future volatility.

It was first introduced in [22]. Later it was studied exhaustively on real data [23]. They
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(a) Typical behavior of the autocorrelation function (NYSE:ISF stock).
There is no significant autocorrelation of Ht, while its absolute value |Ht|
decays by a power-law function, suggesting long memory effect.
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(b) There are cases when the autocorrelation of |Ht| decays exponentially.
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(c) Log-returns of stock NYSE:LEG has weaker memory effect at first
sight but the log-log plot justifies the power-law decay for the first 50
days lag.

Figure 1.1: Autocorrelation function of the log-returns of some daily stock prices (Ht) from
the NYSE. Left panel shows the autocorrelation of Ht, while the middle and right panel
show the autocorrelation of the absolute value of the return |Ht|.
The left and right panels are shown on lin-lin plot, while the right panel is shown on a log-log
plot – suggesting power-law decay. Red dashed lines are the power-law fit on the data which
is a straight line on a log-log plot.
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found that the covariance function

L(τ) := Cov(H2
t+τ , Ht) (1.14)

is negative and tends to 0 when τ → ∞. They investigated European stocks, but this

relationship can be found in most stock prices. Therefore it is regarded now as a stylized

fact of stock prices [13]. Leverage function could be defined as well as with the absolute

value of the log-return

L̃(τ) := Cov(|Ht+τ |, Ht). (1.15)

What is important in the definitions is to eliminate the sign of Ht on one side. In the

numerical results we refer to the function L(τ) in (1.14) as squared leverage function and to

the function L̃(τ) in (1.15) as absolute leverage function.

Limit behavior is

lim
τ→∞

L(τ) = lim
τ→∞

L̃(τ) = 0. (1.16)

The negative value of the correlation is related to the negative skewness of the return.

The reason for this is that in the calculation of the skewness the correlation term in (1.14)

appears. However, negative leverage function can result in positive skewness value as well.

Typical values for daily trading ranges between (more or less) [−2.4, 0.54].

Negative skewness indicate that the ’tail’ of the distribution is on the left (negative) side.

In practice it means that stock prices tends to increase more frequently but the size of the

falls are bigger.

Descriptive statistics of daily log-return can be seen in the next section on Table 1.1. In

320 stocks out of the 1250 stocks that we have been investigated, skewness were positive.

That is, while skewness is mostly negative, we cannot neglect when it is positive.

Some examples are shown on Figure 1.2.

As we will see in later chapters, leverage effect can be easily incorporated into the models

using simply a negative coefficient for the volatility in the dynamics of the return.

1.5 Fundamental properties of asset prices

The two most important properties of asset prices have been presented in the previous

sections: long memory and leverage effect. In [13] there is an exhaustive study of other

properties of the stock prices. These are named as stylized facts and can be regarded as

generally true characteristics of the return proces Ht.

Our analysis of historical log-return data can be found, besides of Figure 1.1 and 1.2, in

Table 1.1 and Figure 1.3. We investigated daily (open) returns of 1250 stock prices from the
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(a) Typical behavior of the leverage function. The negative exponential
fit explaines well the data. The skewness of the log-return of the analysed
stock price NYSE:AED is around −0.99.

0 20 40 60 80 100

−
0

.1
0

−
0

.0
5

0
.0

0
0
.0

5

Squared

Lag

L
e
ve

ra
g

e

0 20 40 60 80 100

−
0

.0
8

−
0

.0
4

0
.0

0
0
.0

4

Absolute

Lag

L
e
ve

ra
g

e

(b) Leverage function of NYSE:ECA stock prices. In rare cases the
function starts from a positive value (L(1) and L̃(1) > 0). The skewness
of the log-return is around 0.2.
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(c) Skewness of the log-return of NYSE:LEG is −0.44.

Figure 1.2: Leverage function of three stock prices from the New York Stock Exchange.
Left column shows the squared liquidity function (1.14), right column shows the absolute
liquidity function (1.15). Red lines show the nonlinear fit a exp(bτ), where a and b are the
fitted parameters.
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Statistics Average (0.05, 0.95) quantile

Mean 0.00014 (-0.00074, 0.00081)
St. dev. 0.02063 (0.00798, 0.04100)
Skewness -0.65034 (-2.44097, 0.54823)
Kurtosis 41.3726 (5.19164, 157.17040)

Table 1.1: Statistical properties of log-returns investigated in 1250 stocks from New York
Stock Exchange.
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Figure 1.3: Histogram of historical log-return data from the New York Stock Exchange. The
upper two plots show typical historgams: negative skewness and high kurtosis. While the
bottom row displays deviant histograms: low kurtosis and close to 0 skewness. Stock prices:
top row: NYSE:AED, NYSE:DDT, bottom row: NYSE:ECA, NYSE:LEG (these two were
the deviant examples in Section 1.4).

New York Stock Exchange.

Uncertainty about stationary property of returns (see the following list) creates a trade-

off: if we choose a large historical data set, then returns would likely be non-stationary; but

if we choose a small data set, then it is not enough to make reliable conclusion about the

data. For this reason we consdiered only those stock prices of NYSE that are long enough.

This is the 1250 stocks we used. Furthermore, we chose that period when big financial crises

did not happen, from 01/01/2010 for 1900 long daily data. (The end date can be different,
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but a thumb of rule is that there is about 250 trading days in a year, more or less. It means

the data reflects about 7.5 years.)

1.5.1 Stylized facts we include in our models

1. Volatility clustering: Mandelbrot described [24] for the first time that high volatility

events are followed by more high volatility events, that is, volatility is clustered by its

size in time. In [10] and [25] they describe that positive autocorrelation of |Ht| is due

to the volatility clustering and that volatility has long memory.

Processes like ARCH [26] and GARCH [27] are used to model volatility clustering.

2. Autocorrelation: is insignificant for the return process Ht and significant for |Ht|.
For more, see Section 1.3.

3. Histogram of the returns: higher moments of historical return data reveal that

their distribution has fat/heavy tails, power-law or Pareto-like tail. The kurtosis of

the distribution is extremely high and they usually have negative skewness, that is,

more frequent small increasing in the price are followed by rare, but strong decreasing.

For our results on the moments of log-returns from NYSE can be seen on Table 1.1.

4. Leverage effect: negative correlation between volatility and return. See Section 1.4

and Figure 1.2.

5. Stationarity: the question is wether the log-return process is stationary is difficult to

answer. Common believe is to say yes, but it is only true for a few years period in real

life. For example, a shock like financial crisis surely changes stationarity. Moreover,

it is difficult to quantify stationarity. In statistics a unit-root test is used to answer

this question, since if the unit-root equals to 1, then a linear time series model is

non-stationary. Unfortunately this is not true in general.

6. Ergodicity: is a lot more difficult question than stationarity. The definition of ergod-

icity, to put it simply, is that a moment can be estimated by the process’s time-average.

On real data it is meaningless, since there is no way to prove that the data comes from

an ergodic dynamics. Moreover, in most of the complex enough models it is very

difficult to prove its ergodicity.

1.5.2 Stylized facts we neglect

Some of the stylized facts use variables that we do not aim to include in our models, such

as trading volume. Some of them focus on temporal behavior instead of looking at the long

term average behavior.
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1. Volume-volatility correlation: there is a correlation between the size of a trade and

the return’s volatility. We assume that our investors have no impact on the market

and we do not include volume in our models.

2. Aggregational Gaussianity: returns over longer period distributed normally. Re-

turns of quarterly or yearly data often modelled as a Gaussian process.

3. Intermittency: probably the models we show in the following chapters describe this

phenomena when return has big and irregular bursts.

1.6 Research goals

Our main goal is to create algorithms that find optimal investment strategies when the

memory effect of stock prices are taken into consideration in parametric stock price dynamics.

In the previous sections we have seen that Algoet and Cover in their cornerstone study

[3] assume stationarity and ergodicity, but this result is theoretical and does not propose a

practical algorithm. Markovian methods, naturally, are not applicable in the long memory

case. Another option could be to use distribution-free setting [21]. Using distribution free

learning methods create the black box problem, a growing problem of today’s machine learn-

ing algorithms. These procedures do not help in understanding the data and the decision.

We aim to create algorithms that help to understand the role of memory in investment

and what kind of methods can be used. Algorithms described in Chapter 5 and 6 are very

simple, but still, optimal in a suitable sense.

We heavily depend on numerical results. This proves the algorithm’s feasibility and

provides more informatioan, helps to better understand the model.

In Chapter 2 we introduce the mathematical models of log-return of the stock prices,

we work with in what follows. Investment strategies are defined and described in Chapter

3. Then in Chapter 4 we present and analyse the log-optimal portfolio with long memory.

At this time, we suppose that the investor knows the ’whole past’, while further on in

Chapter 5 we suppose the minimum: the investor only knows past return values and we

present a learning method that finds the optimal strategy. Chapters 2, 4 and 5 use discrete-

time models without market impact and transactional costs; the investor uses logarithmic

utility in the long-run case. On the other hand, Chapter 6 uses continuous-time model with

transactional cost; the related strategy is described here instead of Chapter 3 because of

the different nature of continuous processes. Because of the difficulty of the problem, in

this case, the investor has no risk preferences and the optimal portfolio is evaluated and

compared to real investments with analysing its Sharpe-ratio.
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Chapter 2

Stock Price Models

At first, we give a definition of long memory. We could do so in several ways, but

the one we use here is based on autocorrelation function, which makes it easy to

detect on real data.

Then we define a general model class, named Conditionally Gaussian, that in-

cludes most well-known price dynamics model. Next we define some known

stochastic processes, in particular with regard to long memory, and we also de-

fine our proposed model, called Discrete Gaussian Stochastic Volatilty, that suits

real data in many aspects. We study extensively its statistical properties: con-

ditional/unconditional moments and autocorrelation functions.

2.1 Introduction

In 1900 L. Bachelier modelled financial processes as a Brownian Motion for the first time in

[28]. Later, B. Mandelbroit extended it to Lévy processes with stable distribution in [29].

These models are lack of many, today regarded as fundamental properties, of asset prices

that we described in Section 1.5, for example, volatility clustering and long memory.

Since then, price models have been extensively studied, summeries can be found. for

exmpale, in the handbook of Shepard [30] and Andersen [31]. There are two main types

of models according to the handbook of [31], Stochastic Volatility models and GARCH-like

models and we will present one of each type. Both types have a tremendous amount of

examples already investigated but here we focus on those which capture the (long) memory

effect in a simple and effective way. The basic difference between the two types of models is

that in GARCH-like models the volatility is a deterministic function of past variables, while

stochastic volatility models are not.

The theory of GARCH-like models started in 1982 with R. Engle’s model called ARCH
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(autoregressive conditional heteroskedasticity) process. In GARCH-like models the choice

is clear: long memory is typically described by the Linear ARCH model (LARCH), defined

by P. M. Robinson in [32], or its extension, the Bilinear ARCH model. For this reason we

use the expression ”GARCH-like”, since LARCH and BARCH are not part of the GARCH

models, but are typically mentioned as a variant of it. Therefore one of the two examples

we give is the BARCH model. In Stochastic Volatility models long memory is described

both in continuous time and discrete time. Two widely used examples are the Fractional

Stochastic Volatility (FSV) model (in continuous time) by [8] and Long Memory Stochastic

Volatility (LMSV) model by [33] (in discrete time, see also [34]). Our model proposition

in the Stochastic Volatility framework can be regarded as a discretized version of the FSV

as well as a more general formalization of LMSV; we call it Discrete Gaussian Stochastic

Volatility (DGSV).

We not only define these two models in this section, but we also use heuristically cho-

sen parameters based on real data and characterize the memory properties of the models.

Clearly, our choice of models is somewhat arbitrary: yet it serves to demonstrate that even

rather complex models easily fit into the model class we presented in Section 3.2.

A drawback of GARCH type models is that they typically require many parameters

which are difficult to estimate; it is not easy to assign a financial meaning to them.

Continuous-time models, on the other hand, usually use fractional Brownian motion

which, in contrast, captures the memory effect with only one parameter. The related port-

folio optimization problems are, however, not solvable explicitly (except some very particular

examples like in [35]).

Our model settings enables us to include memory in a simple manner in such a way that

the memory can be characterized rather well by one parameter. At the same time, financial

meaning can be assigned to the other parameters as well.

2.2 Long memory

First let us recall the definition in (1.13) of the auto-correlation function γX(k) of a stationary

stochastic process {Xt}t∈Z with finite second moments:

γX(k) :=
E[(Xt − E[Xt])(Xt+k − E[Xt+k])]

E|Xt − E[Xt]|2
. (2.1)

We define the types of memory based on the tail-behaviour of the auto-correlation function.

There is no universally agreed definition for long memory.

Definition 2.2.1. A random process Xt with auto-correlation function γX(k) has
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1. long memory, if
∑
γX(k) =∞;

2. moderate memory, if
∑
|γX(k)| <∞ and limk γX(k)kl = c(l) > 0 for some l > 1;

3. short memory, if
∑
|γX(k)| <∞ and limk γX(k)kl = 0 for every l > 1.

Processes with moderate memory are important because their autocorrelation decays as

a power law function and not exponentially, therefore its effect is stronger. In some definition

of short/long memory, moderate memory is regarded as short memory. In several time-series

models ergodicity can only be proven in the case of moderate memory but not for the long

one (see for example [36]).

2.3 Conditionally Gaussian Model Class

As we mentioned earlier, our aim is to build algorithms for parametric models. To do this,

we define first a very wide class of stock price models. As we will see, this model class

contains processes with statistically realistic properties suitable for creating log-optimal port-

folios. The log-return process Ht is defined for t ∈ Z.

Definition 2.3.1. Let (Ω,F , {Ft}t∈Z,P) be a probability space, where the σ-algebra Ft is

generated by {εj}j≤t and {ηj}j≤t where {εj}j∈Z and {ηj}j∈N are two i.i.d. sequences that

are independent. We assume that εj, j ∈ Z are standard Gaussian.

The log-return process is called Conditionally Gaussian is it evolves in time

Ht = F (Zt−1, Yt, εt, ηt), (2.2)

where F is a measurable function, Yt is a stationary Gaussian process such that Yt is

σ(εj , j ≤ t)-measurable.

Here Zt−1 contains the information about the past values of the log-return, so it is as-

sumed that Zt−1 = j(Ht−1, Ht−2, . . . ) for some measurable j : RN → B for some Banach

space B. For instance, in the simplest case, we have Zt−1 = Ht−1 and B = R.

The process Yt represents some economic factor, e.g. the log-volatility. In the following

section we assume that Yt is a causal linear process, i.e.

Yt =

∞∑
j=0

βjεt−j ,

with some coefficients βj satisfying
∑∞

j=0 β
2
j <∞. We also assume β0 6= 0.
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Notice that the random process Yt, t ∈ N is also conditionally Gaussian, since the con-

ditional distribution of Yt on the σ-algbera Ft−1 is Gaussian. We remind the reader that the

conditional law of Yt is determined by the conditional expectation and the conditional vari-

ance processes:

νt−1 := E[Yt|Ft−1] and κ2
t−1 := Var(Yt|Ft−1), t ∈ Z. (2.3)

Remark 2.3.1. It will become clear that for our arguments below it suffices to assume that

Yt is a conditionally Gaussian process. However, we stay with the simple linear case for the

sake of a transparent presentation. Clearly, for the case of a linear process κt = κ = β2
0

constant. We nevertheless keep the notation κt for a while to indicate that more general

processes could be similarly treated.

As we can see, both variables (Zt−1 and Yt) can bring about a memory effect (i.e. they

can have memory, unlike a Markovian process).

For us, the main property of the models considered here is that they allow a non-

Markovian structure, indicated many times by statistical investigations.

Such a model is general enough to describe important phenomena, such as leverage effect,

correlation between volatility and driving noise, anti-persistence, the fit of the kurtosis and

skewness of the returns etc. javitas In the next two sections we are going to present two ex-

amples where these characteristics are discussed. Sampling from certain famous continuous-

time models (see e.g. [9]) also leads to discrete-time models of the type treated here. Our

main proposition of model is the Discrete Gaussian Stochastic Volatility (DGSV) dynamics

which easily incorporates these features but we present another very useful dynamics, a type

of heteroscedasticity model, Bilinear ARCH.

All the models in the following are part of the Conditionally Gaussian Dynamics model

class. We start the description at the most basic models and proceed to the more elaborate

ones: DGSV and BARCH. These two models are studied in the following sections in detail.

2.4 AR(1), MA(∞) and ARMA(p,q)

We only present these model briefly, firstly because they are well-known, secondly, they

only serve as benchmark models, since none of them has long memory. AR(1) and MA(∞)

processes plays an important role in the case of learning algorithms. These algorithms are

easier to understand if we investigate them on a simplier processes. While the ARMA(p,q)

process will serve as a basic version in Chapter 6 of a more elaborated process, called

ARFIMA(p,d,q).
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Definition 2.4.1. The process Ht is an Autoregressive (1) process, shortly AR(1) if

Ht = µ+ αHt−1 + σηt, t ∈ N. (2.4)

The constants µ ∈ R, α ∈ (−1, 1) is the autoregressive or mean-reverting coefficient, while

σ > 0 is the volatility. The noise ηt is an i.i.d. sequence.

This model is Markovian, it has no long memory, but the role of these constants will be

similar in the following models.

It has stationary solution. The expected value and the variance of this process are

E[Ht] =
µ

1− α
, Var(Ht) =

σ2

1− α2
. (2.5)

If the driven noise ηt is Gaussian then Ht is Gaussian as well.

Definition 2.4.2. The process Ht is a Moving Average process, shortly MA(∞) if

Ht = µ+

∞∑
j=0

βjηt−j , t ∈ N. (2.6)

The i. i. d. sequence (ηj , j ≤ t) is the driving noise of the process.

This process have long memory but in that case it also has long memory for both Ht

and for |Ht|. The expected value and the variance of this process are

E[Ht] = µ, Var(Ht) =

∞∑
j=0

β2
j /2. (2.7)

Definition 2.4.3. The process Ht is a Autoregressive Moving Average process, shortly

ARMA(p,q) if

Ht =

p∑
j=1

φjHt−j +

q∑
j=0

βjηt−j , t ∈ N, (2.8)

for some coefficients φj , βj , j ∈ N.

2.5 Discrete Gaussian Stochastic Volatility model

Discrete Gaussian Stochastic Volatility (DGSV) was conceived to have similar behaviour to

the continuous-time Fractional Stochastic Volatility model (see [8] and [9]) ; at the same time,

it is also element of the Conditionally Gaussian model class. For example, the log-volatility

process is described as a stationary Gaussian process and has long memory. Furthermore,
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the noise is also correlated with the volatility. The dynamics of the model is made up of two

parts: the drift, which is a linear function of the past log-return Ht−1 and the volatility.

Definition 2.5.1. The process Yt is called log-volatility. The dynamics of the Discrete

Gaussian Stochastic Volatility model is:

Ht = µ+ αHt−1 + σeYt
(
ρεt +

√
1− ρ2ηt

)
, µ ∈ R; (2.9a)

Yt =
∞∑
j=0

βjεt−j , βj ∈ R. (2.9b)

The constant ρ ∈ [−1, 1] is the coefficient of the leverage effect, which causes correlation

between the driving noises of the log-price and the volatility. We assume the mean-reverting

coefficient |α| < 1 and the volatility coefficient σ > 0. The two noise sequence εt and ηt are

the same as in Definition 2.3.1. The βj coeffecients are such that
∑∞

j=0 β
2
j <∞ and β0 6= 0.

The noise sequence (εj , j ≤ t) must be Gaussian if we wish the DGSV model be an

element of the Conditional Gaussian class. The sequence (ηj , j ≤ t) is not necessarily

Gaussian, but its distribution must be known in order to calculate the optimal strategy

function π̂ in Section 3.2

The driving noise in (2.9a) is constructed in this way in order to have a correlation

between the log-volatility Yt and the driving noise, hence resulting in leverage effect. The

general form of the log-volatility describes a rather wide range of possible processes. In the

numerical investigations we restrict its parameters to

βj = b0(1 + j)−b, j ∈ N. (2.10)

This simple form allow us to characterize the decay of the memory by one parameter, b.

Long memory case is when b is between (0.5, 1). If b > 1, it corresponds to the moderate

memory case. The other constant b0 also plays an important role: we will see that it does

not only effect the strength of the memory but also the conditional skewness and kurtosis

of the distribution of Ht. The condition that b > 0.5 is necessary to satisfy the condition∑∞
j=0 β

2
j <∞.

Remark 2.5.1. An important property about this model, is that it can have long memory

and can be ergodic (in some sense) at the same time. In the next chapter we will see how

we are able to create a log-optimal portfolio with this dynamics. The proof of the ergodic-like

property can be found in the Appendix A.

Besides the other advantageous properties that we formerly mentioned, this model is

also able to capture basic moment-related properties. In most stock price models with long
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memory effect it is usually impossible to calculate the (conditional/unconditional) moments,

while in our model it can be done, in addition, moments can be calculated explicitly.

2.5.1 Conditionally Gaussian

Within the Conditionally Gaussian class, the most important example we suggest is the

DGSV model, therefore it is crucial to demonstrate their relationship.

Inside the Discrete Gaussian Stochastic Volatility model class we mostly consider the

DGSV process.

We defined the log-return as Ht = F (Ht−1, Yt, εt, ηt) with F (h, y, ε, η) = µ + αh +

σ exp(y)(ρε+
√

1− ρ2η). The conditional mean and variance of the log-volatility Yt are

νt−1 = E[Yt|Ft−1] = b0

∞∑
j=1

(1 + j)−bεt−j , (2.11a)

κ2
t−1 = Var(Yt|Ft−1) = b20. (2.11b)

In order to numerically calculate the log-optimal trading strategy, we need to know these

variables. Of course, in a real investment situation, without simulated prices, one needs to

estimate these variables.

2.5.2 Autocorrelation

The autocorrelations of the simulated DGSV processes are realistic in the sense that both the

simulated autocorrelations (Figure 2.1) and the empirical ones (Figure 1.1) decay similarly

for the absolute values of the log-return |Ht|; also, the autocorrelation of the log-returns Ht

are insignificant for lag > 0. We will work with two parametrizations which are different

in their autoregressive coefficient and their strength of memory. In the first parametrization

where the autoregressive coefficient is bigger (0.3 versus 0.05) the autocorrelation of Ht is

slightly bigger, while the autocorrelation of the absolute return is weaker. The value of b0

also differs in the two parametrizations, which is b0 = 1/3 in the first case and b0 = 0.55 in

the second case. Nevertheless, both diagrams on the log-log plot reveal a power-law decay

of the correlations. Just like with real data, the power-law relationship exceptionally good

for the first 50 lags.

The parameters of the fitted lines are

γ̂|H|(τ) ≈ 0.25 τ−0.36 (DGSV-1 parametrization) (2.12a)

γ̂|H|(τ) ≈ 0.34 τ−0.39 (DGSV-2 parametrization) (2.12b)
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Since the exponent in both cases are between −0.5 and 0, they show the presence of long

memory. There is a cut off in the autocorrelation on the log-log plot. It is clearly visible that

around lag 50 the autocorrelation deviates from the fitted straight line. This phenomenon

is due to the fact that there is only a finite amount of data.

Of course, because of the finitness of the data, the autocorrelation function has a cut off

(probably the same happening with real data: the length of the available historical return

limit the power-law behavior).

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Log−return Ht

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Absolute log−return |Ht|

1 2 5 10 20 50 100

0
.0

0
1

0
.0

0
5

0
.0

2
0

0
.1

0
0

log−log plot

Lag

A
C

F

(a) DGSV-1 parametrization.
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(b) DGSV-2 parametrization

Figure 2.1: Autocorrelation of the Discrete Gaussian Stochastic Volatility model with pa-
rameters shown in Table 2.2 on page 28. DGSV-2 model has smaller α parameter which
is responsible for the less significant autocorrelation of Ht and it has more significant au-
tocorrelation for |Ht| because the memory effect in the log-volatility is stronger (higher b0
value, 0.55 instead of 1/3) as Table 2.1 shows. Both DGSV models have long memory in
the volatility process.

Other interesting question about the autocorrelation is how the parameter b influence

the memory of the log-return. The long memory property of the log-volatility Yt does not
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b 0.6 0.7 0.8 0.9 1.0 1.1
exponent -0.39 -0.46 -0.56 -0.69 -0.87 -0.98

Table 2.1: Relationship between parameter b of the DGSV model and the power-law decay
of the autocorrelation function of |Ht|.
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Figure 2.2: The effect of the memory parameter b of the DGSV model on the autocorrelation
of |Ht|. From left to right, top to left the values of b = 0.6, 0.7, . . . , 1.1. The log-log plots
suggest power-law decay in all cases, but the memory from b = 0.8 is only moderate.

necessarily imply that the log-return process Ht also has long memory. However, as Figure

2.1 shows, when b = 0.6 then the log-return process also has long memory.

Figure 2.2 shwos how changes to b affect power-law decay. The result of the linear fit of

the log-log plot, that is, the exponent of the power functions are displayed in Table 2.1. As

the table shows, log-return does not have long memory on the whole b ∈ (0.5, 1) interval. DGSV

model has long memory only for small values of b, for example b = 0.6 or 0.7.

In the simulation we used 500 realizations (generated paths) with T = 5000 timesteps

and the numerical value of infinity in the sums was 1000. (These figures should not be

directly compared with the autocorrelation of single stocks. This is an aggregated result,

using multiple realizations. Moreover, the time horizon T = 5000 means a 20 year long daily

data.)

2.5.3 Mean and Variance

Interestingly, both the conditional and unconditional moments of the marginal distributions

of a DGSV model can be calculated. Morover, we can do this explicitly. In most of the

long memory models this is impossible. Unfortunately, even for the second moment, their
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formulas become very complex.

These moments are important because in stock price models they are generally impossible

to calculate. The conditional moments in the DGSV model give a very good approximation

of the log-optimal strategy in the numerical results, as we will see in Section 4.4.

To calculate the k-th moment it is enough to know E[eKεεj ] for every positive integer

j ≤ k, K ∈ R, where ε ∼ N (0, 1). By a simple substitution of the variable in the integral

of the expression of expected value, we get that E[eKεεj ] = eK
2/2E[(ε+K)j ], which can

be calculated explicitly. E.g. for j = 1 it is equal to eK
2/2K, for j = 2 it is equal to

eK
2/2(1 +K2). The calculations are elementary but long; derivation of the moments’ for-

mulas can be found in Appendix B.

The conditional mean and the mean of the DGSV model are:

E[Ht|Ft−1] = µ+ αHt−1 + ρσκeνt−1+κ2/2, (2.13a)

E[Ht] =
µ+ b0ρσe

∑∞
j=0 β

2
j /2

1− α
. (2.13b)

Here κ = κt−1 = β0 = b0 but since it is a constant, we do not need the time parameter in

the notation.

In the conditional moments we prefer to use the ν, κ variables to emphasize the con-

ditions, while in the unconditional moments we use the βj description to incorporate the

memory. We remind the reader that νt−1 =
∑∞

j=1 βjεt−j = b0
∑∞

j=1(1 + j)−bεt−j .

The last term of both equations, which contains the exponential term and ρ, are the

consequences of the leverage effect. That is, if ρ is not 0 then there is a relationship between

the (conditional) expected value of the log-return Ht and the log-volatility Yt via the βj pa-

rameters. Moreover, as is often observed, the log-return decreases if the volatility increases,

which is ρ < 0 in our case.

To calculate any conditional moment, the crucial point is to calculate the value of

E[eYt |Ft−1], which is κeνt−1+κ2/2. The equation of the unconditional moment is achieved by

taking the expeced value of both sides in the conditional moment in (2.13a). Of course, this

only makes sense if the log-return process Ht is stationary. The existence of the stationary

solution is not self-evident and mathematically challenging to prove. The proof can be found

in Appendix A.

The values of the conditional variance and the variance are:

D2(Ht|Ft−1) = σ2e2νt−1+κ2
(
eκ

2 − κ2ρ2 + 4κ2ρ2eκ
2
)
, (2.14a)

D2(Ht) =
µ2 + σ2e2

∑
0 β

2
j (1 + 4b20ρ

2) + 2(µαM +R(αM + µ))

1− α2
−M2, (2.14b)
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where M := E[Ht] and R := b0ρσe
∑

0 β
2
j /2.

The value of the conditional second moment is:

E[H2
t |Ft−1] =µ2 + α2H2

t−1 + σ2(1 + 4ρ2κ2)e2νt−1+2κ2+

2
(
µαHt−1 + κµρσeνt−1+κ2/2 + αHt−1κρσe

νt−1+κ2/2
)
.

(2.15)

Remark 2.5.2. The (un)conditional first two moments are used to determine approximate

strategies in the next chapter, therefore they play a crucial role.

2.5.4 Skewness and Kurtosis

While it is possible to calculate the (un)conditional skewness and kurtosis, due to their

complexity we do not present them here. Instead of investigating the higher moments of Ht,

we use an approximating log-return process H̄t, defined as

H̄t = σeb0εt(ρεt +
√

1− ρ2ηt). (2.16)

We see that with this, log-return could be defined as Ht = µ+αHt−1+eνt−1H̄t. The skewness

is not linear, therefore we cannot say that the skewness of Ht equals to the sum skewness of

the autoregressive part µ+αHt−1 and eνt−1H̄t, but our assumption is that the autoregressive

part is of a smaller order than the volatility part H̄t. Otherwise the autocorrelation of the

log-return would look different. In this way we are able to approximate the skewness and

kurtosis of Ht by the simpler formula we derived from H̄t.

The reason why we want to give a more or less simple, but approximative formula to

calculate the skewness and kurtosis is that it helps us to find a good parameter choice that

results in realistic simulated path. In the next section we show, how it can help.

Practically speaking, we approximate the skewness and kurtosis of Ht with H̄t−1. that

is, when autoregressive effect is negligible and we replace νt−1 with its expected value, i. e.

0, which results in H̄t−1.

The conditional skewness and kurtosis of H̄t

skewt−1(Ht) = E

(eκε−κ2/2(ρε+
√

1− ρ2η)− κρ√
eκ2 − κ2ρ2 + 4κ2ρ2eκ2

)3
 , (2.17a)

kurtt−1(Ht) = E

(eκε−κ2/2(ρε+
√

1− ρ2η)− κρ√
eκ2 − κ2ρ2 + 4κ2ρ2eκ2

)4
 . (2.17b)

Remark 2.5.3. (2.17a) and (2.17b) show that conditional skewness and kurtosis only de-
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pend on b0 (that is, κ) and ρ.

Figure 2.3 shows the numerically calculated values of the conditional skewness and kur-

tosis as function of ρ and b0. Skewness is a monotone function of ρ and the it is 0 for ρ = 0

(this would be an AR(1) process); real data has negative skewness, therefore ρ should be

less than zero. Kurtosis is an even function of ρ and increases in b0.
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Figure 2.3: Conditional skewness and kurtosis of log-return in the DGSV model with pa-
rameters set to σ = 1, ν = 0. Values around ρ ≈ −0.4 and b0 ≈ 0.25 give similar skewness
and kurtosis to those that can be observed in typical stock returns.

2.5.5 Parameter Choice

The log-optimal strategy we give in the next chapter is analysed by using of simulated data.

In order to make the numerical simulations reasonable, we have to find the model parame-

ters that result in realistic log-return data. Of course, a statistical estimation approach is

impossible, the DGSV model is too complex. Fitting the parameters would require a whole

study in itself and it is out of scope of this thesis.

Therefore we use a heuristic argument for our choice of parameters in order to make our

choice clear. We are using the above mentioned moments as a help.

The only parameter that does not need to reflect realistic property is µ. In our case

we assume that the interest rate r = 0. Its effect on the expected value is clear, it add a

constant µ/(1− α) to the expected value.

The value of α is very small, but usually believed to be positive. Therefore we investigate

the two cases when α = 0.3 or 0.05. Both cases result in a negligible autocorrelation of Ht.

Its value is not crucial for the present thesis.

The value of ρ and b0 is more interesting. In the continuous Fractional Stochastic Volatil-

ity models the everage parameter is thought to be around −0.4 or −0.2. As we mentioned,
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we use the conditional skewness and kurtosis values to set the values of ρ and b0, since these

conditional moments of H̄t a good approximation of the unconditional moments of Ht.

By looking at Figure 2.3, the values (ρ, b0) = (−0.4, 0.25) on both diagrams result in a

realistic skewness (cca -0.6) and kurtosis (cca 5). If we choose a higher values, for example

(ρ, b0) = (−0.15, 0.4) then the conditional skewness and kurtosis are around -0.6 and 7.

The most important parameter is obviously b that causes the long memory effect. The

process Yt as well as Ht has long memory if b < 1. The smaller its value, the stronger the

memory effect, therefore we use b = 0.6.

Table 2.2 contains the chosen parameters for two different parametrization of the DGSV

model: one with slightly stronger autoregressive part and the other one with slightly stronger

memory. The table also contains the statistics of one-one simulated pahts from each model.

DGSV-1

Params µ α b b0 σ ρ
Value 1/550 0.3 0.6 1/3 0.01 -0.4

DGSV-2

Params µ α b b0 σ ρ
Value 1/550 0.05 0.6 0.55 0.008 -0.15

BARCH-1 – moderate memory

Params µ α b b0 a
Value 10−5 0.3 1.7 -0.55 1/120

BARCH-2 – long memory

Params µ α b b0 a
Value 10−5 0.3 0.6 -0.25 1/60

Stat. DGSV-1 DGSV-2

Mean -0.00023 0.00006
St. dev. 0.017 0.025
Skew. -1.39 -0.68
Kurt. 10.0 28.2

BARCH-1 BARCH-2

Mean 0.00022 0.00025
St. dev. 0.011 0.016
Skew. -0.66 0.05
Kurt. 19.3 9.3

Table 2.2: Simulation parameters (left) and the statistical results of one realization (right)
in the two models DGSV and BARCH.

2.5.6 Histogram

The histogram of the DGSV based on simulated data is very similar to the ones we can see

with real data, see results on the NYSE data 1.3. This similarity is a consequence of the

fact that the DGSV model can have very similar moments like the real data have.

A more difficult question is how the histogram changes for different memory. Since we

are not able to calculate the distribution function of the DGSV model, we have to use Monte

Carlo simulation. Figure 2.4 shows three histograms from the DGSV-2 parametrization with

the different b values. The deviation from each other is so small that on printed pages it is
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Figure 2.4: Histogram of the DGSV model with 3 different parameter settings. DGSV-2
parametrization, with b = 0.6, 0.8, 1.

barely visible. The only considerable difference is between the kurtosis of the distribution.

Higher b value results in smaller kurtosis.

The numerical results regarding statistical data are very mutable, therefore we used 50

different realizations and each realization was iterated for 5000 times and infinity in the

indices was 1000. We used longer time series instead of more realizations to be certain that

the model reached stationarity. (Since the stationary distribution is unknown, we are not

able to start the process from a stationary distribution.)

2.6 Bilinear ARCH models

Log-returns are more easily accessible than volatilities—this is one of the main reasons

why conditional heteroscedasticity models became popular. In these models, to forecast

the unknown return of the price, investors only have to know past data of the returns and

estimate model parameters. The most representative feature of stock prices, mentioned in

Section 1.3, 1.4 and 1.5 is that although log-return has small auto-correlation, its absolute

value or its powers do show long memory. While ARCH or GARCH cannot capture long

memory, Linear ARCH and Bilinear ARCH processes can. Not only long memory is captured

but anti-persistence as well.

Recalling the observation that memory is carried within the volatility and not in the drift
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([9]), we apply some restrictions on the original definition of the Bilinear ARCH process from

[36]. For example, the original model has an AR(∞) part, which is replaced in our case by

an AR(1) dynamics – further autoregressive part would only complicate the autocorrelation

function needlessly.

Definition 2.6.1. The stochastic process Ht is a Bilinear ARCH process if

Ht = µ+ αHt−1 + ηtσt, t ≥ 0, (2.18a)

σt = a+
∞∑
j=1

βjHt−j , (2.18b)

where µ, α, a, βj are real parameters.

The constants µ and α are responsible for the autoregressive part. The term σt is the

conditional variance, while µ+αHt−j is the conditional mean. The white noise ηt ∼ N (0, 1)

are i.i.d. variables. The assumption on the distribution is not necessary to be Gaussian, but

we have to know it to be able to find the optimal strategy.

The term µ+ αHt−j is also called the drift, while σt is the volatility.

With the proper choice of these parameters both Ht and σt will be ergodic processes

with long memory. These choices keep the conditional mean part simple. We imagine α is

small, because larger α values result in a stronger autocorrelation of the log-return, which

should be negligible. Nevertheless, it is more difficult to find a proper parametrization of

the models if α has a low value. For these reasons we concluded we should use α = 0.3 in

the numerical simulations (we indicate where we change this setting).

In the notation of Section 2.3 in (2.2) we can ignore the noise ε as well as Yt, so Ht =

F (Zt−1, ηt), where Zt−1 = (Ht−1, Ht−2, . . . ) is an infinite length vector of past log-returns.

The function is F (z, η) = µ + αz1 + (a + βT z)η, where β = b0(2−b, 3−b, 4−b, . . . ) and z are

the infinite vectors and z1 is the first component of z.

The model has stationary solution and ergodicity can be proven for a set of parameters,

see Appendix A. Figure 2.5 shows for which parameters the BARCH model is ergodic.

When b < 1, the model is not ergodic.

2.6.1 Autocorrelation

There are two parametrizations in Table 2.2 for the BARCH model. The first one has

moderate memory, while the other one has long memory. Their autocorrelations can be seen

on Figure 2.6.
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Figure 2.5: Analysing the condition in (A.5). The left figure shows the function b→ b0(ζ(b)−1)
1−α

at different b0 values for α = 0.3, the model is ergodic when this function is < 1. We see
that if there is stronger memory, i.e. larger b0 or smaller b values, ergodicity may fail. The
right figure shows a region on the plane of the memory parameters (b, b0) where the model is
ergodic for a given α. Outside of the ergodic region or when b < 1 (long memory) ergodicity
has not been proven, although the opposite has not been proven either. Based on numerical
simulations, it is likely that ergodicity fails.

The parameters of the fitted lines are

γ̂|H|(τ) ≈ 0.16 τ−1.1 (BARCH-1 parametrization) (2.19a)

γ̂|H|(τ) ≈ 0.32 τ−0.39 (BARCH-2 parametrization) (2.19b)

Indeed, the first one has moderate memory, while the second one has long memory.

2.7 Some Remarks on the above Models

Based on simulations the role of the drift and volatility is clear: the larger the mean-reverting

coefficient α, the more significant the autocorrelation of the log-return Ht, while the strength

of the memory (higher b0 or lower b) is related to the significance of the autocorrelation of

the absolute log-return |Ht|. To put it in a simple way: drift causes autocorrelation of Ht,

while volatility causes the autocorrelation of |Ht|. Since we are looking for stock price models

which describe memory effect well, we have to choose models with lower α and higher b0 or

lower b.

In the introduction of the models we went into detail only about the DGSV model, which,

we think, is an ideal model of real log-returns with long memory effect. Though, both long
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(b) BARCH-2 parametrization

Figure 2.6: Comparison of the moderate and long memory BARCH process with exponent
b = 1.1 and b = 0.65 with their autocorrelation function of log-returns and their absolute
value in the Bilinear ARCH model. Parameters are shown in Table 2.2. BARCH-1 has
moderate memory, BARCH-2 has long memory. The red dashed lines are the power function
fit on the first 50 Lag of the data.

memory models performed well regarding their autocorrelation structure, we could achieve a

better fit on the moments for DGSV. These models are very complex to fit their parameters

statistically. Regarding the statistics of the generated data in Table 2.2, they are very similar

to the statistics of the 1250 stocks from New York Stock Exchange in Table 1.1.

Based on the moments and the autocorrelation functions, we can say that the heuristic

fit is sufficient to produce a realistic stock price; on this, we can apply numerical algorithms.
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Remark 2.7.1. The most important difference between the two models is that ergodicity-

like attribution can be proved for the DGSV model, even in the long memory

case. Unlike DGSV, the BARCH model is not ergodic in the long memory case

and only ergodic for a certain range of the parameters. Without ergodicity or a similar

property Assumption 3.2.3 is not satisfied. Therefore we cannot guarantee theoretically the

convergence of the log-optimal portfolio only with numerical simulations.

In both models, we gave two different parametrization: one with a weaker and one with

a stronger memory effect. In the DGSV model the autoregressive coefficient (α) is stronger

or weaker, while in the BARCH model the difference is in the βj coefficients. The two

parametrization help us to understand the role of the memory in the following chapters.

Moreover, those model that have long memory, are the only models which could create

realistic autocorrelations.

It is important to note that ergodicity and long/short memory properties do not coincide.

In the BARCH model, long memory depends on wether b is smaller or bigger than 1. While

its ergodicity is determined by (A.5).

Both models are able to capture the leverage effect, which we want to include in our

model but we do not intend to investigate its role. The BARCH-2 parametrization failed to

produce negative skewness. Possibly, it is due to the lack of a proper fit.

A small remark at the end: since we eliminate the impact of interest rate, that is, r = 0,

the presented model settings have smaller expected value than real data. This could be

easily amended by choosing bigger µ.
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Chapter 3

Investment Strategies

This chapter contains the definitions of all the investment strategies we use in

Chapter 4 and 5. Convergence is proved only for the log-optimal portfolio in

Section 3.2. The rest of the strategies can be viewed as some kind of simplification

of the log-optimal strategy based on some restriction, for example a reduced

strategy class in threshold strategies in Section 3.6.

The definition of the investment strategy we use in the continuous time case for

the Fractional Brownian Motion is described in Chapter 6.

3.1 Introduction

In what follows we are looking for a sequence of investment decisions that are optimal in

some sense. We emphasize the difference between the sequence of optimal decisions {π∗t }Tt=0,

where T > 0 can be infinity as well and between the function π̂() that uses past information

(i. e. Ft−1-measurable variables) to construct the optimal decision.

We wish to optimize the wealth of the investor such that risk is taken into consideration.

We recall the time-evolution of the wealth from (1.2), but using the log-return and that the

interest rate r = 0, hence Bt/Bt−1 = 1.

W π
t = W π

t−1

(
(1− πt−1) + πt−1e

Ht
)
, t ∈ N. (3.1)

The objective of the investment is to maximize the utility function by choosing the

strategy πt adequately. Typically two cases can be optimized in the log-optimal portfolio

problem: (i) finite horizon problem, where we want to optimize the utility function at a

fixed time T > 0; or (ii) the long-run problem, where we optimize the time-average of the

log-wealth. The optimal strategy π∗(T ) := {π∗t (T )}T−1
t=0 for the finite horizon problem (if
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exists) satisfies

E
[
log(W

π∗(T )
T )

]
= sup

π
E [log(W π

T )] , (3.2)

where the supremum is over [0, 1]-valued adapted processes π = (π0, . . . , πT−1). The long-

run problem is defined similarly, the optimal strategy π∗ := {π∗t }∞t=0 is such that

lim inf
T→∞

1

T
E
[
log(W π∗

T )
]

= max
π

lim inf
T→∞

1

T
E [log(W π

T )] , (3.3)

where πt, t ∈ N ranges over adapted [0, 1]-valued processes. The characterization of optimal

strategy will be obtained thanks to the conditionally Gaussian dynamics we assumed about

Yt.

We will furthermore use ergodic arguments for the long-run case. For the price evolution

of the stock, we assume that the log-return process is a Conditionally Gaussian process (2.2),

Ht = F (Zt−1, Yt, εt, ηt). In the log-optimal case, we prove that the algorithm is optimal

indeed, but we also present other strategies that rely on some simplification of either the

strategy or the objective function.

W. l. o. g. let the initial wealth of the investor w0 = 1, thus

W π
T =

T∏
t=1

W π
t

W π
t−1

=:
T∏
t=1

exp(Gt), (3.4)

then we get that

E[logW π
T ] =

T∑
t=1

E[Gπt ] =

T∑
t=1

E[E[Gπt |Ft−1]], (3.5)

where Gπt := log(W π
t /W

π
t−1) is the growth in the period t.

In order to optimize (3.3) we need to assure two things:

1. The optimal strategy π∗t optimize the conditional probability E[Gπt |Ft−1], in π more

explicitly:

E
[
log
(
(1− π)(1 + r) + πeHt

) ∣∣Ft−1

]
(3.6)

2. The optimal strategy exists and the objective function converges.

In the next section we show that for the Conditionally Gaussian model class it is tractable,

then in the following sections we present the simplifications that perform well on simulated

data and are also a base for learning algorithms.
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3.2 Log-optimal Strategy

The log-optimal portfolio is also called growth-optimal portfolio because it is attained by

optimizing the expected logarithm of the growth function at each investment decision. We

introduce the expected growth function gπ:

gπ(z, ν, κ) := E
[
log
(

(1− π)(1 + r) + πeF (z,ν+κε0,ε0,η0)
)]

(3.7)

Here ν and κ are real numbers, π ∈ [0, 1], z ∈ B; the random variables (ε0, η0) have the same

distribution as (εt, ηt), t ≥ 1.1

Notice that the logarithmic term in the expected value in (3.7) has the same distribution

as the growth Gt conditionally on Ft−1

Gt := log

(
Wt

Wt−1

)
= log

(
(1− π) + πeHt

)
. (3.8)

Though, in the following we prove the log-optimality for the case when r 6= 0, it could

be omitted if we still assume that the interest rate is a constant. Let us denote by r̃ =

log(Bt/Bt−1) the continuously compounded interest rate. In this case, the growth equals to

Gt = r̃ + log
(
(1− π) + πeHt−r̃

)
. (3.9)

This problem is the same as in the case of zero interest rate beside apart from a constant

shift on the log return which would be Ht − r̃.

The following lemmas and assumptions are needed for the existence of the optimal strat-

egy.

Lemma 3.2.1. There exists a constant c1 > 0 such that, for all π ∈ [0, 1],∣∣∣log
(

(1− π)(1 + r) + πeF (z,ν+κε0,ε0,η0)
)∣∣∣ ≤ c1(1 + |F (z, ν + κε0, ε0, η0)|).

Proof. Clearly,

(1− π)(1 + r) + πeF (z,ν+κε0,ε0,η0) ≤

1 + r + eF (z,ν+κε0,ε0,η0) ≤

2emax{F (z,ν+κε0,ε0,η0),log(1+r)} ≤

2eF (z,ν+κε0,ε0,η0)+log(1+r).

1Strictly speaking, κ sho range over [0,∞). However, the law of ε0 being symmetric, one may equally well
let κ run over R.
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If π > 1/2 then

(1− π)(1 + r) + πeF (z,ν+κε0,ε0,η0) ≥ eF (z,ν+κε0,ε0,η0)/2.

If π ≤ 1/2 then

(1− π)(1 + r) + πeF (z,ν+κε0,ε0,η0) ≥ (1 + r)/2.

The statement follows easily from these estimates.

From now on we concentrate on the case when Zt−1 = Ht−1 ∈ B := R, but the following

lemmas in the finite dimensional case Z ∈ Rk would be similar. We will briefly comment on

the general case later.

Assumption 3.2.1. Assume that F is continuous, Z ∈ R and for each N > 0,

sup
z,ν,κ∈[−N,N ]3

|F (z, ν + κε0, ε0, η0)| ≤ X(N)

with some integrable random variable X(N).

Lemma 3.2.2. Let Assumption 3.2.1 be in force. Then the function

(z, ν, κ, π)→ gπ(z, ν, κ)

is continuous.

Proof. It is enough to prove continuity on every cube [−N,N ]3, N > 0. Now dominated

convergence and Lemma 3.2.1 show the statement.

Lemma 3.2.3. Under Assumption 3.2.1, there exists a measurable function (z, ν, κ) →
π̂(z, ν, κ) ∈ [0, 1] such that

gπ̂(z,ν,κ)(z, ν, κ) = sup
π∈[0,1]

gπ(z, ν, κ).

Proof. We will use Proposition D.5 of [37] with the choice ψ(z, ν, κ) := [0, 1] and let us

define v(z, ν, κ, π) := gπ(z, ν, κ). Note that ψ is trivially a compact-valued Borel-measurable

multifunction and that v is continuous by Lemma 3.2.1 so the cited proposition indeed

applies and we can conclude.

Lemma 3.2.3 guarantee the existence of the log-optimal function. We also refer to this

function as log-optimal selector function, since for each argument it ”selects” the optimal

investment strategy.
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The importance of the Conditionally Gaussian models is that with the help of the con-

ditionally known parameters: Zt, νt and κt, we are able to handle the problem similarly as

if it was a Markovian decision problem.

The theorem below connects the log-optimal strategy (π∗t ) and the log-optimal selec-

tor function (π̂). The optimal solution for the investment problem relies on a day-by-day

(on-line) optimization procedure where the investor uses the information Ft−1 to achieve

optimality at time t.

Theorem 3.2.2. Let us regard a log-optimal portfolio problem defined in (3.2) with the

dynamics given by (2.2). The following strategy is log-optimal, on finite as well as on

infinite horizons:

π∗t = π̂(Zt−1, νt−1, κt−1), t = 1, 2, . . . , T. (3.10)

Remark 3.2.1. In order to use the above theorem, the investor needs the quantities Zt−1,

νt−1 and κt−1 but these are available information at t − 1. For calculating π̂, the investor

has to evaluate the function gπ at every value of π ∈ [0, 1] but in practice it is enough to do

this along a finite partition of the interval. Calculation of gπ is easy, since it is the expected

value of a function of a two-dimensional random variable (ε0, η0).

Proof. We need to prove that E
[
log(W π∗

T )
]

= supπ E [log(W π
T )] for the strategy π∗ defined

in the statement of Theorem 3.2.2. W. l. o. g. let w0 := 1. Using the identity

W π
T =

T∏
t=1

W π
t

W π
t−1

=:

T∏
t=1

exp(Gt),

we get that

E[logW π
T ] =

T∑
t=1

E[Gπt ] =
T∑
t=1

E[E[Gπt |Ft−1]].

Since the sum is finite it is enough to maximize each term in the sum individually, i.e.

E[Gπt |Ft−1]→ max.

Notice the identity

Law[Gπt |Ft−1] = Law
[
log
(

(1− π)(1 + r) + πeF (z,ν+κε0,ε0,η0)
)] ∣∣

z=Zt−1,ν=νt−1,κ=κt−1
.

Hence it is enough to maximize the expected value of the right-hand side above which is

exactly what π̂(Zt−1, νt−1, κt−1) does.

As we can see, the theorem above only proves for finite T . The assumption below
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ensures that the log-optimal strategy converges, that is, it is also the solution of the long-

run problem. Moreover, in the finite case the optimality is true for the expected value, while

the next assumption ensures that π∗t is log-optimal for almost every realization.

Assumption 3.2.3. Let Assumption 3.2.1 be valid. Denote

Qt := gπ̂(Zt,νt,κt)(Zt, νt, κt), t ∈ N

where π̂ is as in Lemma 3.2.3. The limit limN→∞(
∑N−1

i=0 EQi)/N exists, the limit

lim
N→∞

(
N−1∑
i=0

Qi

)
/N

also exists almost surely and the two limits are equal.

When we mention ’ergodicity-like’ property, what we really mean is the fulfilment of

Assumption 3.2.3.

Remark 3.2.2. The (optimal) growth-rate G∗, that is,

G∗ := lim
N→∞

(
N−1∑
i=0

EQi)/N. (3.11)

Of course, in a case when Ht is stationary, we have G∗ = EQi.

3.3 Markovian strategy

The Markovian version of the algorithm would be where we optimize the expected growth

conditionally on the previous value:

gπ(z) := E
[
log
(
(1− π)(1 + r) + πeHt

)
|Ht−1 = z

]
, (3.12)

if the distribution of Yt is known.

Of course, there is a wide range of possible algorithms to achieve optimality for the

Markovian case. We do not wish to cover this topic further. The reason why we mention

it here is that we are using a similar approach in Chapter 5 where the optimal solution is

learned throughout the incoming stream of the data.
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3.4 Approximative strategies

The log-optimal solution is achieved by optimizing the expected value in (3.7). To cal-

culate the expected value with respect to ε0 and η0, we need to numerically evaluate a

two-dimensional integral for a given π. When there are N stocks – a case which we will

not touch on in this paper – the numerical integral becomes 2N -dimensional. To overcome

this difficulty it is desirable to approximate the log-optimal strategy with a sub-optimal one

which is computationally more feasible. We will see that these approximations also help in

understanding the log-optimal strategy. For simplicity, we choose the interest rate r = 0.

In the literature a second order approximation has been defined in [38] under the name

semi-log-optimal strategy. In [39] and [40] the method was investigated numerically in a

non-parametric model setting. We do not use this terminology since we will show another

kind of approximation (first-order) as well, and it might be confusing as to what the semi-

log-optimal portfolio refers to.

As we have seen, the key moment is to maximize the conditional expected value of the

growth that is to find a constant π ∈ [0, 1] such that

E[log(1− π + πeHt)|Ft−1] (3.13)

reaches its maximum.

In the previous section we could guarantee the existence of the optimal strategy and also

its convergence. To do that, in every instance we had to calculate (3.7), which contains a

2-dimensional Gaussian integral. Of course, this can be done without any problem, but if we

use approximative strategies, we end up in simple function evaluations instead of numerical

integrals which are calculated much faster.

In the next chapter we will see that the approximative strategies perform very well in

the numerical simulations.

The basic idea is to approximate the the function log(·) and exp(·) by their Taylor

polinomial in first or second order in the growth (3.8).

For example, in the linear approximation

log(1− π + πeHt) ≈ log(1− π + π(1 +Ht)) = log(1− πHt) ≈ πHt. (3.14)

In the first step we approximated exp(x) ≈ 1+x and in the last step we used that log(1−x) ≈
x. The second order approximation goes similarly:

log(1− π + πeHt) ≈ · · · ≈ π(Ht +
1

2
H2
t )− 1

2
π2H2

t . (3.15)
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Since the typical value of Ht is really small on a daily trades (in the 90% of the time this

approximation has smaller than 1% error), these approximations are good.

The approximated growth functions in a general stock price model with log-return Ht

have the following form:

gπlin := E[πHt|Ft−1], gπquad := E
[
π(Ht +

1

2
H2
t )− 1

2
π2H2

t |Ft−1

]
. (3.16)

We call the first one as linear approximation and the second one as quadratic approximation.

These expressions are polynomial functions of π, therefore their optima can be calculated

easily. In the linear case the approximative optimal strategy is:

π̄lin =

1, if E[Ht|Ft−1] > 0

0, otherwise.
(3.17)

In the quadratic case the approximative optimal strategy is:

π̄quad =
E[Ht|Ft−1]

E[H2
t |Ft−1]

− 1

2
(3.18)

restricted on the [0, 1] interval.

The restriction of the strategy on teh [0, 1] interval was arbitrary in the previous section.

Any bounded interval could be adequate. Here, this is not generally true, since if the value

of πHt was big, that is, π was big, then the approximations would not work well.

Remark 3.4.1. These conditional expectation formulas are not much easier to calculate

than the original formula in (3.7). Moreover, these formulas are more general, since they

also work on any model class where the conditional moments are easy to calculate.

In the Conditionally Gaussian model class however, where Ht = F (Ht−1, Yt, εt, ηt), the

conditional expectation can be reduced in the same way to an unconditional expectation.

We have

E[Ht|Ft−1] = E[F (z, ν + κε0, ε0, η0)]
∣∣
z=Ht−1,ν=νt−1,κ=κt−1

, (3.19)

which is, again, a two-dimensional integral in ε0 and η0.

In specified parametric models, these formulas can become simpler. We will study the

two models, DGSV and BARCH, in detail where these approximative strategies can be

calculated as a simple function evaluation.

Remark 3.4.2. In the linearly approximated log-optimal portfolio the optimal strategy is

extreme, i.e. its value is 0 or 1, but there is no mixed strategy. The strategy in the Condi-

tionally Gaussian model class is a function of h, ν and κ: π̄lint = π̄lint (h, ν, κ). For several
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models, as we will see later, we can define a 0–1 barrier function denoted as h̃(ν, κ) and

approximate π∗t by

π̄lint =

1, if Ht−1 > h̃(νt−1, κt−1),

0, otherwise.
(3.20)

In practice, the conditional expectation of a return can be easily calulated for most

of the parametric models. This approximation works for other model class, not only for

Conditionally Gaussian type process.

Example 3.4.1. (AR(1)) Since E[Ht|Ft−1] = µ + αHt−1 if Ht is an AR(1) process (see

Definition 2.4.1), the 0-1 barrier function is a constant:

h̃ = −µ
α
. (3.21)

Example 3.4.2. (DGSV) The conditional mean has been shown in (2.13). Therefore, the

0-1 barrier function of a DGSV process is

h̃(ν, κ) = −µ+ ρσκt−1e
ν+κ2/2

α
. (3.22)

Remark 3.4.3. There is an interesting parallel between the strategy of the second order

approximation and the log-optimal solution when stock price is a diffusion in continuous time.

If the stock price in the diffusion case is described by dSt/St = µ(St)dt+σ(St)dWt, S0 = s0,

for some real-valued functions µ(·) and σ(·) and a Brownian motion Wt, then the optimal

solution is π∗,diffusiont equals µ(St)/σ(St) (here, it is not restricted between 0 and 1). See

the optimal strategy in Subsection 1.2 at page 6 in [41]. It is very similar to the quadratic

approximative solution in (3.19).

3.5 Approximative Markovian strategies

Similarly to the log-optimal strategies, the approximative strategies too can be used with the

Markovian assumption. This model is not interesting per se, but we make some conclusion

which will be helpful in establishing the learning method. To be discussed later.

Our aim is still to optimize the conditional expected growth with 1) the Markovian

assumption about the information (Section 3.3) and 2) the approximation of the log(·) and

exp(·) functions (Section 3.4). The conditional growth

E
[
log ((1− π)(1 + r) + π exp(Ht))

∣∣Ft−1

]
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with the Markovian condition (3.12) and the approximations (3.14) and (3.15) is:

gπM,lin(h) := E[πHt|Ht−1 = h], (3.23a)

gπM,quad(h) := E
[
π(Ht +

1

2
H2
t )− 1

2
π2H2

t |Ht−1 = h

]
. (3.23b)

The sub/superscript M refers to the Markovian condition. Of course, the approximative

Markovian strategies are also very similar:

πM,lin
t = 1, if E[Ht|Ht−1] > 0. (3.24)

πM,quad
t =

E[Ht|Ht−1]

E[H2
t |Ht−1]

− 1

2
. (3.25)

3.6 Threshold Strategy

The approximative strategies are based on the simplification of the objective function. How-

ever, we can approach the problem from another point of view: what if we simplify the

strategy class? Yet, our only assumption was about the strategy πt is to be a [0, 1]-valued

adapted process, t ∈ N.

We have seen that, the first order approximation simplifies somehow the strategy class:

it takes values only 0 or 1, but not as a restriction.

π̄lin =

1, if E[Ht|Ft−1] > 0

0, otherwise

or briefly πt = 1{E[Ht|Ft−1]>0}. The indicator function 1{x>0} is 1 if x > 0 and 0 otherwise.

We have also seen that in many cases there is a 0-1 barrier function, because the con-

ditional expectation can be calculated easily for most of the models and we know when

E[Ht|Ft−1] > 0 holds. In the Conditionally Gaussian model class, there is a two-variable

function h̃(ν, κ) which separates the possible (h, ν, κ) space into two regions, h̃(ν, κ) > 0,

where the strategy is either 0 or 1.

The threshold strategy in Chapter 5 will be learnt as the data arrives. Therefore we

formalize the strategy in a way, to be more applicable for data. Instead of using the σ-

algebra notation, the conditional expectation is conditioned on a stochastic process Xt−1.

Threshold type strategy is where the strategy can only has two possible values based on

a decision:

πt = 1{f(Xt−1)>0}. (3.26)
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The variable Xt is an Ft adapted stochastic process, symbolizes past data. In practice, it

can be any variable that are easy to get from data. For example, it can be the average of

the past three returns, or similar. It also can be an estimation of the volatility.

The conditional growth function in this case is

g̃ = E[log(1− 1{f(Xt−1)>0} + 1{f(Xt−1)>0)}e
Ht |Xt−1]. (3.27)

This function is still a random variable because it is a function of past data.

Of course, the choice of the event {f(Xt−1) > 0)} is somewhat arbitrary. It only makes

sense if there is indeed a clear distinction between the region of π = 0 and π = 1.

With the indicator function, the growth function simplifies to

g̃ = E
[
Ht1{f(Xt−1)>0)}|Xt−1

]
. (3.28)

For simplicity, the function f() can be a linear function. However, the variable Xt−1 still

can be arbitrarily complex, hence information is in the choice of Xt−1. Then the investors

can choose what information they would like to use.

With the linear f() function the growth is

g̃(θ) = E
[
Ht1{Xt−1>θ)}|Xt−1

]
, or g̃(θ) = E

[
Ht1{Xt−1<θ)}|Xt−1

]
. (3.29)

Which relation sign should we use is depend on the correlation between Xt−1 and Ht. For

positively correlated case, one should use > and for the negatively correlated case, the <.

The so-called Kiefer–Wolfowitz algorithm is to search for the maximum of an expected

value depending on a parameter. Our goal in Chapter 5 is to find the maximum of the

expected growth as a function of the threshold parameter θ

g(θ) := E[Ht1{Xt−1>0}], (3.30)

similarly in the negatively correlated case

g(θ) := E[Ht1{Xt−1<0}]. (3.31)

Let us define the threshold strategy function π̃(x, θ) such that

π̃(x, θ) := 1{x>θ}. (3.32)
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Then the optimal threshold strategy is

π∗t = π̃(Ht−1, θ
∗), (3.33)

where θ∗ is defined as

θ∗ := arg max
θ∈R

g(θ). (3.34)

The following theorem states when the optimal θ exists.

Proposition 3.6.1. Let the log-return process Ht defined on the probability space (Ω,F ,
{Ft}t∈N,P) and let the Xt adapted on Ft. Assume, there is only one root of the differentiable

function φ(x) := E[Ht|Xt−1 = x] and that φ(x) > 0 if x > 0. If Ht is stationary, then the

root of φ(x) is the unique optimal threshold:

θ∗ = {x|φ(x) = 0}. (3.35)

Proof. For the sake of simplicity assume that Xt−1 has a pdf. The conditional expectation

of the growth is

g(θ) = E[Ht1{Xt−1>θ}] = E
[
E[Ht|Xt−1]1{Xt−1>θ}

]
.

Since E[Ht|Xt−1] is a function of Xt−1, call it v(Xt−1) and denote the pdf of Xt−1 as fX(x),

the expected value is ∫ ∞
θ

v(y)fX(y)dy.

The integral has optimum where

−v(y)fX(y) = 0.

Since fX(y) is non-negative therefore the optimal threshold is where v(y) = 0 which conclude

our statement.

Remark 3.6.1. The main message of the theorem is that only those information can be used

in the optimization algorithm which are not mean-independent from the price process. The

concept of mean independence is well-known in econometrics which is a stronger property

than uncorrelation but weaker than the stochastic independence. For the definition of mean

independence, see Section 18.2 of [42].

Remark 3.6.2. A conclusion of Proposition 3.6.1 is that the linear approximative strategy

is log-optimal if the strategy can only be 0 or 1. This is only true in the univariate case.
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Example 3.6.1 (AR(1)). Let Ht defined as in Definition 2.4.1. The conditional expectation

is

E[Ht|Ht−1 = x] = µ+ αx.

Its root, that is, the optimal threshold is

θ∗ = −µ
α
.

When α < 0, then the assumption in Theorem 3.6.1 about φ(x) > 0 if x > 0 is false, but the

optimality is true if we change the inequality sign in (3.26) to πt := 1{Xt−1<θ}. (We remind

the reader that the expected value is different, µ/(1− α).)

As we can see from the example, to determine the threshold we either need to estimate

µ and α from a long enough sample or either we learn the value of θ∗ by using Stochastic

Gradient. In a more realistic dynamics there are more than two parameters that needed to

be estimated. Furthermore the threshold is very sensitive to the estimation error of α.

Example 3.6.2 (DGSV). Let the log-return Ht be a DGSV process according to (2.9). Its

conditional expectation is

E[Ht|Ht−1 = x] = µ+ αx+ σρE[eYt |Ht−1].

The conditional expectation is unknown but we will see later in the numerical results that

there is a unique solution.

3.7 Constantly rebalancing portfolios

In the literature, constantly rebalancing portfolio can have different meanings. What we

mean here is that the strategy is constant in time. That is, the investor uses the same

strategy over and over again. Despite being a very simple strategy, if the return process was

an i. i. d. sequence, this strategy could perform log-optimally.

However, for us, the aim is to use this strategy as a benchmark model. In the next

chapter we contrast the log-optimal and the approximative strategies with the constantly

rebalancing portfolio.

Let us denote this strategy as πrebt ≡ πreb.
It is defined similarly as before, but instead of the conditional expectation of the growth

at t it uses unconditional expectation:

πreb∗ := arg max
πreb∈[0,1]

{ lim
T→∞

E[log(W πreb

T )/T ]}. (3.36)
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Since Ht is stationary by our assumption, it is well-defined. For this strategy, the first order

approximation is quite simple: the investor decides to invest the whole wealth at the initial

moment, then does not do anything.

We do not use, only mention the second order approximation:

πreb,quadt =
E[Ht]

E[H2
t ]
− 1

2
. (3.37)
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Chapter 4

Log-Optimal Portfolios for

Conditionally Gaussian Processes

This chapter is about the numerical results of the log-optimal portfolios and their

approximations. In Section 4.2 we present that the log-optimal solution reaches

the optimal portfolio for almost every realization, while in Section 4.3 we analys

how the parameters that are related to the long memory are in connection with

the investment.

Section 4.4 focus on how good if the performance of the approximative solutions.

We do not have theoretical results about their goodness, but the numerical sim-

ulations show that they approximate well.

4.1 Introduction

As we have mentioned in Section 3.2, the long horizon optimization problem in (3.3) can be

solved going along only one realization (see (A.1)), concluded from Assumption 3.2.3. There-

fore, we can denote the long horizon value function, the growth as G∗ := limT→∞ log(W ∗T )/T .

Numerical simulations were performed until the finite time horizon T = 4000, its value func-

tion is denoted as log(W ∗T )/T . (It should be noted that log(W ∗T )/T is not the solution of the

short horizon problem in (3.2), but the optimizer strategy is the same until T ). We recall

here that the optimal strategy function (3.10) is based on the function π̂(z, ν, κ):

π∗t = π̂(Zt−1, νt−1, κ). (4.1)

It is worth comparing the outcomes of the log-optimal strategy with that of another,

well-known strategy, and also with the apporixmative strategies described in Section 3.4.
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For this purpose, we chose the constantly rebalanced portfolio as a frequently used strat-

egy, where the investors use a constant strategy function πt = πreb ∈ [0, 1], see Sec-

tion 3.7. The best constantly rebalanced investor optimizes the expected value function:

πreb∗ := arg maxπreb∈[0,1]{limT→∞ E[log(W πreb

T )/T ]}. In practice we determine this strategy

by Monte-Carlo simulation of the models. The difference ∆T := (log(W ∗T )− log(W πreb∗
T ))/T

between the log-optimal and the best constantly rebalanced portfolio gives the measure of

how much better the log-optimal strategy performs.

The convergence in Assumption 3.2.3 works for the approximative strategies and the

constantly rebalanced strategy as well, therefore, the value function converges to a constant

in every case. Let us denote the value function by G∗, Glin, Gquad and Greb respectively

for the log-optimal, the first and second order approximative and the constantly rebalanced

strategies.

To better understand the value function of each strategy, which can be considered as a

daily compound rate, we convert the value function to annual yield (AY ) (or yearly interest

rate), which equals exp(250G)− 1; that is, how much the portfolio’s value grows in one year

with value function (growth-rate) G.

Of course, in the numerical results we use a finite T to approximate the growth-rate.

Because it is a random variable, the mean of the annual yield in the numerical simulations

is relevant. We already introduced the so-called mean annual yield (MAY ) in (1.11). For

example, for the log-optimal investor its mean annual yield is

MAY ∗ :=
∑
i

e(250 1
T

log(W ∗T (i))) − 1,

where i denotes the i-th realization (of which we took 100) and T = 4000 is the number of

time-steps in the simulation.

In every figure we used the same parameter settings as in Table 2.2. Whenever we

changed the parameter, it is explicitly indicated. In every figure we used the same realiza-

tion(s) to allow us to compare the effect of the parameters. We refer to different realisations

as seeds.

4.2 Log-Optimal Solution

The two most important questions to ask about a new optimization algorithm are: 1) Is the

optimum achieved on a ’reasonable time horizon’? 2) Is this optimum essentially better than

competing strategies like constant rebalanced portfolios? The answer for the first question

is shown in Figure 4.1. The value function becomes stable around t = 1000 in the DGSV

model and around t = 1500 in the BARCH model, which is about 4-6 years assuming daily
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portfolio rebalanced. It is reasonable, since log-optimal investments are typically used for

long term portfolios. (In our simulation T = 4000, i.e. roughly 16 years.)

Value function and yearly interest rates are very high in the results of the simulation.

Clearly, transaction fees of all types are excluded, which is why such excellent returns can

be achieved.
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(a) Value function of the DGSV model. Value
functions converge around day 1000. Log-
optimal portfolio exceeds by far the best con-
stantly rebalanced strategy (πreb = 0.9). Value
functions of the log-optimal investor and the
constantly rebalanced investor on the plotted
realization are: 0.0009 and 0.00009, in annual
yield: 26.6% and 2.2%. Parameters are shown
in Table 2.2.

0 1000 2000 3000 4000

0
.0

0
0
6

0
.0

0
1
4

Ergodic

lo
g
(W

t)
t

0 1000 2000 3000 4000

0
.0

0
0
4

0
.0

0
1
2

Between ergodic and long−memory

lo
g
(W

t)
t

0 1000 2000 3000 4000

0
.0

0
1
5

0
.0

0
3
5

Long−memory

t − days

lo
g
(W

t)
t

Value function of investments in Bilinear ARCH models

(b) Value function of the log-optimal investor in
different parametrization of the BARCH model.
Parameters for the first and third plot as the
same as in Table 2.2 (left) for moderate and
long memory. The middle plot has the same
parameter as the ergodic one, but with b = 1.
The annual yield in the three cases are: 26.5%,
37.4% and 62.3%.

Figure 4.1

The other important question is answered in Figure 4.2. With the same parameter

settings as in Table 2.2, this figure shows how the log-optimal solution exceeds the best

constantly rebalanced strategy for 100 seeds. The results are consistent and different driving

noise did not affect them. We remind the reader that the two main differences between
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Figure 4.2: Value function at T = 4000 in every model for different realizations - because of
the ergodicity, almost every realization should converge to the same number within a model.
DGSV-2 has a more volatile stock price, it needs more time to converge, its deviation is
higher. Surprisingly BARCH-long also shows convergence, although it is not proved to be
ergodic.

DGSV-1 and DGSV-2 models is that the latter one has smaller autoregressice coefficient (α)

and stronger memory (b0 is higher). The result of this difference is that the convergence of

the DGSV-2 is slower, hence the higher deviation on the figure.

Surprisingly, the BARCH-2 model with long memory also shows convergence, despite

being unable to prove any kind of ergodicity (and Assumption 3.2.3 is also not proved). The

BARCH-1 model has lower standard deviation than the others, which is obvious, since its

memory is only of moderate type.

The variable ∆T shows how the log-optimal investor overcomes the constantly rebalanced

one. In the case of DGSV-2 we see that T = 4000 was not enough long to beat the benchmark

strategy in 5 out of 100 realizations (we note that, by the ergodic assumption, ∆T converges

to a positive constant a.s.).

4.3 Analysing the Role of Memory

Figures 4.3 and 4.4 investigate the relationship between the strength of the memory and the

performance of the log-optimal investor for 5 different scenarios (different random sequences).

Regarding the strength of the memory, we are focusing on the exponent b, which is the decay

of the past information. We remind the reader that when b ≤ 1, the model has long memory,

and when b > 1, it has moderate memory (both have infinite memory, but the former one is

stronger).

Figure 4.3 shows the value function for the four models described in Section 2.5 and 2.6
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Figure 4.3: Relation between the value function of the two DGSV and the two BARCH
models and the memory decay parameter b. The parameters are identical to the ones in
Table 2.2 except for the exponent b. The model BARCH is not ergodic on every value of
b > 0.5 unlike the model DGSV, therefore a dashed vertical line shows where the BARCH
model is ergodic.

but for different b values. While in the previous sections the model BARCH-1 referred to

the moderate memory case and BARCH-2 to the long memory, here it is different, since

b determines the type of the memory. Interestingly, in those cases where the ergodicity

assumption can be proven for the models, the value function is independent of b and the

value function of different realizations are close to each other. We can see this on Figure 4.3.

In the cases of DGSV-1/2 when b ≈ 0.5, this effect deviates a little. In the long memory

BARCH case (b < 1) the relationship between the value function and the memory decay

parameter b cannot be described.

We have seen in Section 2.5 that every unconditional moments of the DGSV model

only depends on the memory through b0 and
∑
β2
j (where βj = b0(1 + j)−b). 1 Based on

this, we wanted to investigate how the value function depend on b0 while the sum
∑
β2
j is

kept constant. We found that the value function has an approximately linear dependency

structure on b0. Figure 4.4 displays their relation on a log-log plot and shows a linear

relationship between them. Since the linear fit on the data (black line) performs well, it

suggests a power law dependency between the value function and the decay parameter.

As an interesting fact we mention that the expected value of the log-return in model

DGSV is a linear function of b, and in the continuous time-model the value function of the

log-optimal investor is also a linear function of the mean. Unfortunately there is no evidence

that it is indeed true in the discrete case (or at least in our case).

1In the DGSV model the term
∑
β2
j appears as the log-volatility. The formulation of this term in

continuous time could be formulated as the variance of the log-volatility.
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Figure 4.4: We show how the parameter b0 effects the value function when the term
∑
β2
j is

kept constant. It appears that their relationship is linear, as we show with a fitted dashed
black line on the five different realizations at once.

4.4 Approximation of the Log-Optimal Strategy

In the numerical simulations we found that log-optimal strategy is extreme in the sense that

the investor only buys a riskless or risky asset every time but hardly uses mixed strategies

(Figure 4.5). In a negligible part of the time there can be mixed decisions but this is so

rare that it cannot even be seen on the histogram. In the DGSV-1 parameter settings the

log-optimal investor used mixed strategy only 61 times out of the 4000 investment days,

while in the DGSV-2 case the log-optimal investor used mixed strategy 338 times out of

the 4000 investment days. The reason for this is that in the second case the autoregressive

coefficient α is smaller (0.05 instead of 0.3) and that the memory is stronger (b0 = 0.55

instead of 1/3), which results in a much higher volatility.

We have seen that the optimal strategy π∗t is determined by the optimal selector function

π̂t(h, ν, κ) as (3.10) shows and the approximated portfolios approximate this log-optimal

strategy. The first order approximation from Section 3.4 answers the question of why the

log-optimal strategy is mostly 0 or 1. Since the standard deviation of the log-return is

around 0.02, even the first order approximation performs well where the optimal strategy is

exclusively 0 or 1 (see (3.20)). Figure 4.6 (a) shows the log-optimal strategy selector function

π̂ for the DGSV-2 model on a blue coloured scale, while the red curve on the figure shows

the 0–1 barrier from (3.22). The first order approximated strategy is 1 above the red curve

and 0 under it. We can see that the red curve approximates well where the log-optimal

strategy is closer to 0 or 1.

Figure 4.6 (a) shows a small region on the plane (h, ν) where the log-optimal investor uses

mixed (between 0 and 1) decisions. The second order approximation explains this deficiency
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Figure 4.5: Comparing the Value function of the constanlty rebalanced investors (left) versus
the log-optimal investor (right, histogram of their strategy). The parameters are the same
as in Table 2.2, DGSV-1 model. The best constantly rebalanced portfolio was determined
by MC simulation of 200 paths with T = 4000. The value function reaches its maximum
when we invest 60% in the risky asset. The yearly average yield of the constantly rebalanced
and the log-optimal investor is: 1.5% and 66%. The log-optimal investor mostly uses 0 or 1
strategy.

and Figure 4.6 (b) shows that this approximation is almost impossible to distinguish from

the log-optimal one on the figure. The size of the mixed strategy region is proportional to

the memory. The higher the b0 or smaller the b or smaller the α, the bigger this region is.

Of course, the approximated strategies cannot be the same as the log-optimal one. In

the model DGSV-1, where the autoregressive part is also significant (α = 0.3, b0 = 1/3), the

approximations perform well, while in the DGSV-2 model, where α = 0.05, b0 = 0.55, the

mixed strategy region is bigger, hence the approximated strategies perform more poorly.

Numerical results of the competing strategies are displayed in Table 4.1. We observed

that the quadratic approximation preforms well in each case. In fact, in the case of BARCH-

2, the approximation exceeds expectations (where log-optimal solution is not proved). The

reason for this good performance is that the quadratic approximation simply uses function

evaluation, whereas in the log optimal case, we use numerical integration and we need to

discretize the strategy’s interval. Linearly approximated strategy works well, but slightly

worse in the case of DGSV-2, where the memory is stronger and the AR coefficient α is

small. The best constantly rebalanced investor performs poorly in all cases compared to the

log-optimal or the approximated log-optimal cases.

54

DOI:10.15774/PPKE.ITK.2021.009



−0.2

0.0

0.2

−3 −2 −1 0 1 2 3

ν

h
Lin. approx.

red

0.00

0.25

0.50

0.75

1.00
π̂

Optimal strategy selector function  π̂(h, ν)

ν = 2 ν = 2.5

−0.2 0.0 0.2 −0.2 0.0 0.2

0.00

0.25

0.50

0.75

1.00

h

S
tr

a
te

g
y type

approx.

exact

Optimal strategy selector function  π̂(h, ν)

Figure 4.6: Log-optimal strategy and its approximations. Figure (a) compares the log-
optimal strategy with the first order approximation (Lin. approx). Above the red curve the
approximated strategy is 1, and below it, it is 0. Figure (b) compares the log-optimal strategy
with the quadratic approximation. Instead of the whole π̂(h, ν) two-variable function, we
only show results for high values of ν, where the difference between the two strategies is
more significant. Nevertheless, it is difficult to see the difference between the strategies on
the plots.

Portfolio Mean Annual Yield

DGSV-1 DGSV-2 BARCH-1 BARCH-2

Log-optimal 62.080% 29.641% 32.568% 70.966%
2nd order approx. 62.075% 29.623% 32.567% 70.971%
1st order approx. 62.051% 28.384% 32.569% 70.966%
Best const. rebal. 2.0946% 14.053% 1.618% 2.673%

Table 4.1: Comparing the profitability of different portfolios (different investment strategies)
based on simulation of 100 paths for T = 4000 investment days. Since the bank’s interest
rate r = 0, every yearly interest rate above 0 is profitable.

4.5 Conclusion

In summary, numerical simulations show that our algorithm performs well in the models

we considered. Not only can we prove that we have indeed found the optimal strategy, we

can also evaluate its performance (which would not be possible in the general setting of e.g.

[3]). The optimal strategy significantly beats constantly rebalanced strategies. Furthermore,

the optimal strategy can be calculated in a simple way via numerical integration or further

simplified with well performing approximations .

We were able to investigate the effect of the strength of memory on investment success
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in a quantitative way. We found relationships between parameters related to memory and

the value function of the log-optimal investment.

Comparison with real statistical data makes it plausible that it may indeed be profitable

to apply this strategy in investment practice. Knowing the underlying model, π̂ and gπ̂ can

be determined in advance and the data can be fed into it as time goes on. The model can

easily be extended to include several assets and exogenous macroeconomical factors.

In the next chapter, we explain an algorithm that work online, without knowledge of the

underlying model.
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Chapter 5

Adaptive Learning of Log-Optimal

Strategies

The numerical results in the previous chapter showed that approximative strate-

gies perform well on a realistic investment problem. Building on this observation,

in this chapter we introduce a learning algorithm that is able to find the (approx-

imative) optimal strategies for the log-optimal investor in an online setting where

data points arrive one-by-one and the investor adapts his portfolio to them. In

contrast to most learning methods, the computational capacity of our algorithm

is low therefore it seems applicable in situtations where resources are constrained,

such as in the case of high frequency trading. The optimization procedure goes

along with the incoming data stream without the need of complex estimations,

unlike most non-parametric methods. The method can be used on real data as

well. In the case of simulated data, the optimal parameter of the algorithm

can be calculated for parametric models (using numerical integration or Monte

Carlo) and thus the performance of our procedure can be compared to them.

The systematic study of this method is fairly novel in the field of portfolio opti-

mization. In this chapter we aim to study the theory and practice of Stochastic

Gradient and related algorithms as applied to parametrized trading strategies.

5.1 Introduction

The goal in this chapter is to optimize the logarithmic utility based on continuously in-

coming information on financial assets (typically their prices). This study investigates the

Kiefer–Wolfowitz variant of the Stochastic Gradient method, that is shown to converge in

simulations to the log-optimal solution in the threshold-type, buy-and-sell strategy class (see
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Section 3.6).

We demonstrate that there is an optimal threshold type strategy which can be learned.

We check this for different choices of stock price dynamics: e.g. with stochastic volatility

and long memory (DGSV), and on certain simpler models.

Subsequently, we numerically verify the convergence of the algorithm. Furthermore, we

analyze in depth the typically problematic question of how to choose the hyperparameters

(the parameters of the algorithm and not the parameters in the dynamics of the prices)

without knowing anything about the price other than a small sample.

In high frequency trading the decisions must be made in seconds or even miliseconds

[43]. Given the nature of algorithms, those that require huge computational capacities are

not efficient since they are slow. For example, non-parametric methods or complex machine

learning algorithms work well on big data sets with immense computer efforts (see a survey

of non-parametric methods e.g. in [39] and a summary in machine learning methods [44]).

On the other hand, parametric models that are based on dynamics of the prices or indices

may give fairly good results if precise and accurate parameter estimations are available.

To get satisfactory estimations, again one needs a big data set, and typically decisions are

sensitive to the error of the estimations.

To resolve the above-mentioned problems we use the Kiefer–Wolfowitz method to choose

the parameters of our strategies which lets us (i) make decisions immediately starting at

the initial step; (ii) process new information/data as they arrive, without needing to wait

until we have a big enough data set, as the strategy function improves in every step and

(iii) there is no need to estimate the parameters of the dynamics. With this method, we

aim to optimize log-utility investments (maximizing the expected value of the logarithm of

the wealth). The method is also capable of tracking the changes of the market dynamics,

which we ignore here in order to investigate the method itself in finance instead of market

changes.

Stochastic Approximation [45] (or Robinson–Monro method) is an iterative method to

find the root of f(θ) := E[X(θ)], such that f(θ∗) = m, where X(θ) is a random variable,

such that its distribution depends on θ and θ∗ is the root of f(θ)−m. The method assumes

that we are able to generate i. i. d. samples from X(θ) with a given θ. Basically, it is a

stochastic version of the Newton–Raphson method where there are consecutive observations

of the functions loaded with randomness/noise. If the derivate of the function exists then

the method can be used for optimization. When the derivate does not exist or is unknown,

Kiefer and Wolfowitz proposed [46] a finite difference approximation based on consecutive

observations. This method is a variant of the Stochastic Gradient method.

Nonetheless, as far as we know, stochastic approximation or Kiefer–Wolfowitz has not

been used for directly optimizing the parameter of a parametrized family of strategies as we
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do here. We hope that this introduction of the usage of the method in investment theory

will lead to further developments. Other works dealt with different approaches, like learning

the parametrized stopping time for American/Asian options [47] or the optimal stopping

time of liquidation [48]. Other typical fields of applying this algorithm are the estimation

of quantiles for CVaRs [49], [50]or [51]. There is also an intriguing study about the optimal

splitting of orders in [52].

5.2 Stochastic Approximation

5.2.1 The Robbins–Monro algorithm

Stochastic approximation is an iterative method to find the root of a function where one can

only take measurements of the function contaminated with noise. If we can make (noisy)

measurement of the derivate of the function then it can be used for optimization.

The basic problem was described Robbins and Monro [45]. We assume that we are able

to take i. i. d. samples X1, X2, . . . of X(θ) with a distribution function D(x|θ) defined as

P(X < x|θ) =

∫ x

−∞
dD(x|θ), (5.1)

where the parameter θ runs over R, for simplicity. We wish to solve the equation f(θ) = m

where m is given and

f(θ) = E[X(θ)] =

∫ ∞
−∞

xdD(x|θ). (5.2)

The Robbins–Monro procedure is defined as

θt+1 = θt + at(m−Xt), (5.3)

for some arbitrary θ0 initial value. Under mild conditions, the series θt converges in proba-

bility to a constant θ∗ as t→∞ that satisfies the equation

f(θ∗) = m. (5.4)

In words, we can formulate the procedure as

θt+1 = θt + {step size}{direction}. (5.5)

Besides assuming the availability of i. i. d. samples, typical assumptions are:

1. The values of Xt must come from a bounded set, i.e. there exist a finite constant c > 0
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such that
∫ c
−c dD(x|θ) = 1.

2. The real sequence at > 0 satisfies
∑

t a
2
t <∞ and

∑
t at =∞.

3. The function f(θ) has only one root and f(θ) ≤ m for θ < θ∗ and f(θ) ≥ m for θ > θ∗.

The last assumption is similar to the assumption we had for the existence of optimal thresh-

old in Proposition 3.6.1.

The Robbins–Monro algorithm can be formulated in a way to separate the random

variable X and the parameter, let f(θ) := E[F (X, θ)] for a suitable function F . In this

setting, at step t, we use F (Xt, θt) to determine the direction in the procedure.

The first version of the Robbins–Monro algorithm relies on the assumptions that we are

able to make i. i. d. and unbiased samples of the function f(θ), but both assumption can

be relaxed. Clearly, if f is the derivative of a function U then applying the Robbins-Monro

algorithms with m = 0 then the minimum (maximum) of U can be found.

5.2.2 The Kiefer–Wolfowitz algorithm

The Robbins–Monro precedure can be used for optimization if noisy, unbiased estimation of

the derivate is available. Otherwise the Kiefer–Wolfowitz algorithm or its variants can be

used to approximate the derivate.

Let us assume that we want to maximize the function g(θ) = E[G(X, θ)], where X is

a random variable and θ is a real parameter. In the Robbins–Monro algorithm (5.5) the

direction should be the gradient, if one wishes to optimize the function g(θ). Since, it is

not available, we have to use an approximation. In the Kiefer–Wolfowitz procedure, a finite

difference is used as an approximation of the gradient.

The Kiefer–Wolfowitz procedure is

θt+1 = θt + at
G(Xt, θt + ct)−G(Xt, θt − ct)

ct
, (5.6)

where the step-size at and the step-size of the finite difference ct are real-valued sequences.

In our case, we want to optimize the growth function in (3.30) or (3.31), that is,

G(Ht, Xt−1; θ) := Ht1{Xt−1>θ}. From the mathematical point of view, the particularity

is that G does not only fail smoothness, it even fails continuity. We will see, however, that

this does not prevent the algorithm from converging.

The Kiefer–Wolfwitz algorithm in our case is

θt+1 = θt + at
G(Ht, Xt−1; θt − ct)−G(Ht, Xt−1; θt + ct)

ct
, (5.7)
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Since the growth G(θ; . . . ) is an indicator function of θ, therefore its finite difference can

be simplified to the indicator function of a range. For greater clarity we denote the range

[x− c, x+ c] as [x± c]. Then the algorithm can be written as

θt+1 = θt + at
Ht1{Xt−1∈[θt±ct]}

ct
. (5.8)

This formalism will help us in the latter to better understand the usage of the method.

To prove convergence of the algorithm in such generalality seems very challengin. But via

examples in the Section 5.3 we will check numerically that this recursively defined process

θt converges to the optimum what we showed in the previous section:

θt
MSE−−−→ θ∗. (5.9)

Convergence is shown in in numerical simulations in the sense of the Mean Squared

Error (MSE) which is a sample-based analogue of the L2-convergence of random variables.

Definition 5.2.1. (Convergence in Mean Squared Error)

Let xt(i), t ∈ N and i = 1, 2, . . . , N be the i-th sample of a measurement at time t. Then xt

converges to the real number x in the sense of Mean Squared Error, if

1

N

N∑
i=1

(xt(i)− x)2 −−−→
t→∞

0, (5.10)

that is, if the squared error at time t, which is 1
N

∑N
i=1(xt(i)− x)2 converges to 0.

We find that, typically, its convergence speed is a power function of the number of

iterations.

In general, there is no straightforward way to choose the hyperparameters determining

the choice of the sequences at, ct. In Section 5.3 we present some ideas on the basis of which

we can choose the hyperparameters in a reasonable way.

Since the algorithm iterates the θ parameter in every step, it gives the investor the

possibility to modify the investment strategy. Using the threshold strategy function in

(3.32) with the current parameter θt, the strategy is

πt = π̃(Ht−1, θt). (5.11)

As θt converges to θ∗, the strategy improves during the investment.

In real life investment the financial environment is not static, the dynamics of prices can
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change and new factors can appear/disappear, therefore optimal strategy changes as well.

To this end, in practice investors use constant and very small step sizes at and ct which can

track down the changes of the optimal values. As before, we do not investigate the role of

temporal financial effects here.

5.3 Numerical Results

The critical part of every algorithm is the choice of the hyperparameters. In their paper,

J. Kiefer and J. Wolfowitz [46] also address the issue of parameter-choice though they were

able to give exact and sufficient conditions in a simpler context. These conditions are typical

requirements and our model satisfy them as well:

1. ct → 0.

2.
∑∞

t=1 at =∞, that is, the algorithm can reach any state.

3.
∑∞

t=1 atct <∞.

4.
∑∞

t=1 a
2
t c
−2
t <∞.

For simplicity, we choose the two series at = t−p and ct = t−q such that it staisfy the above

mentioned criteria. With this choice, we are able to characterize the stepsize and the small

change of the numerical difference by one-one parameter. The most used choice in theoretical

studies is p = 1 and q = 1/3 as they give optimal theoretical convergence speed. We remark,

however, that this is not always the optimal choice in practice. Unless stated otherwise, we

use these values.

During the numerical results we often rely on Monte Carlo simulations. Of course, the

aim of using iterative methods is to avoid using Monte Carlo algorithms. Monte Carlo

procedure uses the whole past data to estimate an expected value, that is, it requires huge

computational effort. In a high frequency trading environment there is no capacity for this

and the iterative method requires few capacity and can be used right continuously as the

data stream arrives. The reason why we use Monte Carlo here, is that on a big dataset

it gives a very good estimate of θ∗ and thus we can assess the performance of the Kiefer–

Wolfowitz algorithm by comparing to the value thus calculated. Moreover, it helps us to

estimate the expected growth function g(θ) to understand the K–W algorithm.

5.3.1 Analysing the Expected Growth Function

Let us analyse the expected growth function g(θ). Understanding its behavior helps us to

construct the step-sizes in a suitable way, and also to understand how the algorithm works.
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Figure 5.1 and (5.8) makes it clear that θt must stay in the same range as Xt−1, since

Xt−1 6∈ [θt ± ct], ∀t ∈ N would result in constant θt. In the numerical simulations we only

show results about the Xt−1 := Ht−1 case. On the examples shown on Figure 5.1 we can
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Figure 5.1: Expected growth as a function of threshold parameter θ. The Kiefer–Wolfowitz
algorithm seeks its maximum. When α < 0, Ht and Ht−1 are negatively correlated, when
α > 0 and in the MA(∞) and BARCH cases they are positively correlated. The values of
the function were generated by Monte Carlo simulation of the process.

make the following remarks:

• g(θ → −∞) = E[Ht], low θ means that πt = 1, that is, the wealth equals to the price

of the stock.

• g(θ →∞) = 0, high θ means that π = 0, the wealth equals to the price of the bond.

• In the negatively correlated case instead of (3.30) we should use (3.31). Then g(θ →
−∞) = 0 and g(θ →∞) = E[Ht]. This is the case when the autoregressive coefficient

is negative, α < 0.

• If θt takes value out of the typical value of Ht where the derivate of g(θ) is zero then

it is hopeless for the algorithm to return and it stays there.

• Interestingly, the steepest g(θ) functions are produced by the DGSV and BARCH

model, although α = ±0.5 in every cases. The reason for this, is that extra information

about Ht is hidden in the volatility because of the leverage effect.
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• Steeper g(θ) function does not necessarily means faster convergence. The original K-

W algorithm assumes independent samples, but in our case we have the log-return

process {Ht}t∈N, which is time-correlated. This results in a slower convergence speed.

• In every presented dynamics there is a unique θ∗ value. Moreover, the g(θ) function

is smooth in every cases.

• As we can see that g(θ) flattens out towards the ±∞, it is desirable to choose the

initial value θ0 as close to the optimal θ∗ as possible. One possible way to do this is

to set θ0 to a preliminary estimation of the mean.

To overcome on the problem of choosing a proper initial value θ0 and to avoid the flat

part of the curve g(θ) we apply two procedures. First, the initial value is set to the average

of the first few values of the log-return

θ0 :=
1

10

10∑
t=1

Ht. (5.12)

Second, a very frequently used method, is to project the θt values on a bounded set where

g(θ) is not flat.

θt =


min1≤j≤tHj , if θ̃t < min1≤j≤tHj ,

θ̃t, otherwise,

max1≤j≤tHj , if θ̃t > max1≤j≤tHj ,

(5.13)

5.3.2 Performance of the Kiefer–Wolfowitz algorithm

The major question about the algorithm is weather the θt series converges to θ∗ and in what

sense? It seems challenging to prove mathematically for a general long memory process, but

the results of the numerical simulations show that

θt
MSE−−−→ θ∗, (5.14)

that is, it converges in the Mean Squared Error (MSE) sense.

That is, we generated by Monte Carlo simulation N different realizations for the log-

return process and for each process we applied the K-W procedure, resulting in {θt(i)}T,Nt=1,i=1,

where T is the number of time-steps the procedure was running. The Mean Squared Error

is

MSEt :=
1

N

N∑
i=1

(θt(i)− θ∗)2, (5.15)
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Figure 5.2: Convergence of the Kiefer–Wolfowitz algorithm in L2 for the some process as in
5.1. The left figures shows 5-5 realizations, while the right figures shows the Mean Squared
Error (MSE) of all the realizations.

where θt(i) is the i-th realization at the t-th timestep. It is also common to talk about the

Root Mean Square Error (RMSE), which is the square root of MSE, that is, RMSE =√
MSE.

Another important question is if the Mean Squared Error converges, then how fast? In

most cases we found MSEt decays at a power speed, that is MSEt ≈ t−r.
Theoretical studies also give such results: limt→∞ E[|θt−θ∗|2] = 0 is shown to hold under

appropriate conditions (which are not met in our case). It has been shown that the best

possible convergence rate, using Robbins–Monro algorithm is t−1, while using the Kiefer–

Wolfowitz algorithm is t−2/3, (see [53], [54] and [55]).

Using the simple parametrization at = t−1 and ct = t−1/3 Figure 5.2 shows the con-

vergence of (5.15) in the case of AR(1) and DGSV process (α > 0). The simulations were

executed with N = 25 realizations and for T = 50 000 time steps and the figure shows 5

realizations out of the 25.

The Mean Square Error is shown on a log-log plot on Figure 5.2. Power function on a

log-log plot is a linear line. As we can see, in both cases, t→MSEt is approximately linear

on the log-log plot, that is, MSEt ∼ t−r for some r > 0.

5.3.3 Modifications

First, we investigate the effect, what happens if we leave projecting on a bounded set as

in (5.13). The algorithm parameters were set to at = t−1 and ct = t−1/3. The numerical

simulations consisted of T = 50.000 timesteps and N = 25 relaizations. We investigated

two models, the AR(1) and DGSV, both with three different parametrizations. Table 5.2

shows the speed of convergence for each dataset with and without using the projection. The
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parameter settings of each dataset is shown in Table 5.1. While ’dataset 1’ does not show

much difference for using the projection (the rate changes from 0.54 to 0.46 for the AR(1)

process and from 0.31 to 0.30 for the DGSV process), in the case of the other two processes,

the convergence speed more or less triple if we use the projection.

µ α σ ρ b0 b

dataset 1 0.15 0.5 0.75 -0.2 0.4 0.7
dataset 2 0.01 0.5 0.05 -0.2 0.4 0.7
dataset 3 0.005 0.3 0.05 -0.2 0.4 0.7

Table 5.1: Parameters of the three datasets used in Table 5.13. The AR(1) model only uses
the µ, α and σ parameters, while DGSV uses all of them.

Model dataset 1 dataset 2 dataset 3

AR(1) −0.54 / − 0.46 −0.05 / − 1.35 −0.32 / − 1.40
DGSV −0.31 / − 0.30 −0.86 / − 1.61 −0.51 / − 1.32

Table 5.2: Convergence speed of the Mean Square Error for AR(1) and the DGSV model.
For each model and dataset the table shows the results ’without / with’ projection.

Model dataset 1 dataset 2 dataset 3

AR(1) −0.16 −0.030 −0.013
DGSV −0.008 −1.61 −1.18

Table 5.3: Convergence speed in the case, when θ0 is set as the 0.995-th quantile of of the
process.

The other settings which we can modify is how we choose the initialization θ0. Up to

now, we estimated it from from a short sample, as the average of the first 10 elements (each

realization started from different θ0). Let us examine, what happens when θ0 is started from

the 99% percentile of the process. Results are presented in Table 5.3. In some cases the

speed of convergence is not ruined by choosing a very sub-optimal θ0.
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Chapter 6

Optimal Trading of Fractional

Brownian Motion

This chapter is based on joint work with Paolo Guasoni and Miklós Rásonyi.

The results of this chapter can be found in [56].

In contrast to the previous chapters, we alter our notations in some cases. From

now on, we use continuous-time models and we include a friction term that

has been so far neglected. That is, we assume that the investor faces liquidity

constraints and has to pay an extra price for the trades, depending on trading

speed.

The stock price here is considered to be a fractional Brownian motion, which may

seem an arbitrary choice at first glance, but it captures the essence of continuous-

time processes with long memory. Despite the fact that the stock price can have

negative values, we explain that this investment model is financially realistic.

Because of the complexity of the continuous models with long memory, we solely

focus on the risk-neutral preference case.

6.1 Model

Like in the previous chapters, we still assume that the investor uses only two assets: a

riskless and a risky one. The latter will be assumed a Fractional Brownian Motion (FBM),

while the riskless asset will have 0 interest rate, therefore one might think of it as cash. The

assumption of friction is not only to make the model more realistic: without it, the problem

is ill-posed.

The appearance of friction makes the stock illiquid, that is, the investor is not able to sell
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it instantly for free. There is a finite ”speed” of the transactions that restricts the investor,

therefore it is meaningless to value the investment as the sum of the cash and stock. A

reasonable question is how to maximize the cash position at the investment/trading horizon

T > 0.

So that we avoid any misunderstanding, we use a different notation for the asset prices

as before. Let (Ω,F , P ) be a probability space equipped with a filtration Ft, t ∈ [0,∞).

The stock price St = σBH
t is a fractional Brownian motion BH

t with some scaling factor

σ > 0. The Hurst-exponent H characterizes the memory: when H > 0.5 the process has

positive long memory, when H < 0.5, the memory is called anti-persistent. For the H = 0.5

case we have a Brownian motion without memory. The anti-persistent memory is also

called negative-memory, since in this case, any non-overlapping increments are negatively

correlated—which results in heavily wiggly paths. The fractional Brownian motion process

is defined by three reuirements: i) its initial value BH
0 = 0; ii) for every realization its path

are continuous in time; iii) it is a Gaussian process and its covariance function is

Cov(BH
t , B

H
s ) =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
.

In the current case, the strategy φt is the speed of trading, which gives how fast the

investor buys or sells its stocks. The strategy is a feasible if it is optional1 and almost surely

absolutely integrable on [0, T ]. We are only looking for feasible strategies.

The portfolio is characterized by two terms. The amount of cash at t is denoted by X0
t ,

while the number of the shares the investor holds in stock is denoted by X1
t . Their initial

value at t = 0 is (z0, z1) ∈ R2. Since φt is the speed of trading, the number of shares equals

X1
t (φ) := z1 +

∫ t

0
φu du. (6.1)

When φu < 0, the investor sells and when φu > 0, the investor buys stock. The ammount

of cash, on the other hand, changes in the opposite way with the speed of trading:

X0
t (φ) := z0 −

∫ t

0
φuSudu−

∫ t

0
λ|φu|α du. (6.2)

The term
∫ t

0 λ|φu|
α du is what the investor pays for the transaction. The typical value of

the illiquidity λ is 0.01 − 0.001, while the price-impact α > 1. The α = 1 case is called

the constant bid-ask spread, where the investor pays transactional cost proportional to the

number of stocks he/she bought or sold. When α > 1, the investor pays higher transactional

1We do not give the definition of optional process, since it is rather technical and does not restrict a real
investment in any way.
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cost per stock for a bigger buy or sell. Notice that the first integral is price of stock that the

investor has bought or sold on the interval [0, t], because the term φudu equals the number

of stocks that has been traded, while Su is its price.

Because of friction, we investigate the monetary profits, as we noted, the terminal posi-

tion of the risky asset must be sold away and the portfolio consist at the end only cash. It

restricts the feasible-strategy class to

A(T ) := {φ ∈ S(T ) : X1
T = 0, E[(X0

T (φ))−] <∞},

for T ∈ (0,∞).

The aim of the investor is to optimize the above mentioned trading problem with the

objective function

u(T ) := sup
φ∈A(T )

E[X0
T (φ)].

6.2 Optimal strategy

The optimization task would be ill-posed in the case of absence of frictions and arbitrage

opportunity would rise. From Theorem 5.1 of [57] it follows that if∫ T

0
E|St|

α
α−1 dt <∞

for every T > 0, then u(T ) < ∞, the problem is well-posed and there exists a trading

strategy φ∗ such that

u(T ) = EX0
T (φ∗(T )).

Optimality can only be proven asymptotically. We classify the strategies based on the

”speed”: how fast the expected payoff function grows.

Definition 6.2.1. A family of strategies (φT )T>0, φT ∈ A(T ) is asymptotically optimal if

E[X0
T (φT )] > 1 for all T large enough and

lim
T→∞

lnE[X0
T (φT )]

lnu(T )
= 1. (6.3)

In other words, a sequence of strategies is asymptotically optimal when it approaches

the maximal rate of profit growth for large horizons.

We have to make two important remarks about the definition. First, the maturity T

is a fixed parameter, it must be known at the beginning of the investment. Second, the

logarithm function in the fraction means that if the expected payoffs only differs in a term
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that are negligible with respect to ln u(T ), then they are in the same family of strategies.

The following theorem shows the main theoreatical statement of this chapter. The proof

of this theorem can be found in [56]

Theorem 6.2.1. Let λ > 0, α > 1, H ∈ (0, 1
2) ∪ (1

2 , 1). Then for St := BH
t ,

(i) Maximal expected profits satisfy

lim sup
T→∞

u(T )

TH(1+1/(α−1))+1
<∞. (6.4)

(ii) For each 0 < κ < 1/(α− 1), the strategies

φt(T, κ) :=

sgn(St(H − 1/2))|St|κ, t ∈ [0, T/2),

− 1
T/2

∫ T/2
0 φs ds, t ∈ [T/2, T ]

(6.5)

satisfy

lim
T→∞

EX0
T (φ(T, κ))

TH(1+κ)+1
> 0, (6.6)

(iii) Let m > 1/(α − 1) be an integer. There exists an increasing sequence Tn, n ≥ m

tending to ∞ such that the trading strategies

φT = φ(T, 1/(α− 1)− 1/n), Tn ≤ T < Tn+1, n ≥ m; φT := 0, 0 ≤ T < Tm

are asymptotically optimal (and the Tn can be explicitly calculated).

(iv) The strategies φ(T, κ) defined above satisfy

lim
T→∞

Var(X0
T (φ(T, κ)))

T 2H(κ+1)+2
= D

for some constant D = D(H,α, κ, λ) ∈ (0,∞), where D(H,α, κ, λ) is uniformly bounded

in κ. Hence, their Sharpe ratios

sup
T>0

EX0
T (φ(T, κ))√

Var(X0
T (φ(T, κ)))

are uniformly bounded in T .

Instead of presenting the proof, here, we focus on the essential meaning of the theorem

and in the next chapters we will show, based on numerical simulations, how the solutions

work.
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The first statement (i) of the theorem gives that the optimal strategy asymptotically

grows as TH(1+1/(α−1))+1. Less rigorously, it means that the optimal solution is u(T ) ≈
TH(1+1/(α−1))+1 as T goes to ∞.

The second statement (ii) shows a simple strategy that can approach arbitrary close

the maximal expected profit. Since 0 < κ < 1/(α − 1), the speed of EX0
T (φ(T, κ)) which

is TH(1+κ)+1 is always less then TH(1+1/(α−1))+1. We call the variable κ as the trading

intensity.

Following the second statement a natural idea arises to construct an optimal strategy

with a continuously increasing trading intensity, that is, κ depends on time and converges

to 1/(α − 1). This is stated in (iii), but as we will see in the next section, the previously

presented and simpler strategy is sufficient.

The investment problem under consideration is particular because the price of the stock

can be negative (with 1/2 probability). However, this is true e.g. in futures markets. There-

fore we need to assure that the investment is financially reasonable. The fourth statement

(iv) states that the Sharpe ratio of the investment is uniformly bounded in T . This is a

regular way to qualify an investment. As the theorem showed, the Sharpe ratio is the frac-

tion of the expected (excess) return and its standard deviation. For a brief and exhaustive

introduction of the Sharpe ratio we refer the reader to [19].

6.3 Numerical results

This section takes a closer look at the performance of the strategies proven to be asymp-

totically optimal in Theorem 6.2.1. The questions that we answer here can be divided into

3 groups: 1) How good are the strategies for finite T , because the theorem works only for

the limit T →∞? 2) How realistic is the Sharpe ratio of the investment? 3) What are the

effects of the parameters? Reported results are obtained from Monte Carlo simulations of

104 paths of fractional Brownian motion, each of them with 103 discretization intervals. The

number of paths and the discretization is sufficient, because with larger numbers we obtain

the same result.

As we earlier noted, the parameters can be grouped by whether they describe the finan-

cial environment (α, σ, λ,H) or the strategy of the investor (κ, T ). For λ we tested values

between 0.0001 and 0.01, settling for the upper bound 0.01. Likewise, results do not change

significantly for horizons greater than the value T = 1 used hereafter. To match the vari-

ation typical of stock prices, we simulated the asset price St = σBH
t with σ in the range

0.2–0.5 and found that results were robust, thereby settling for σ = 0.5. It is still a question

what is the exact value of α and how it can be estimated. Most results suggest its value is

between 1 and 2, but the case α = 1 is ill-posed, therefore we investigated the case when α
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Figure 6.1: Expected payoff (vertical axis, in logarithmic scale) against horizon (horizontal
axis, in logarithmic scale). α = 2, σ = 0.5, λ = 0.01, κ = 0.9 1

α−1 .

is in the range 1.1–2. The possible values of κ depends on α, because of this we introduce

the critical trading intensity variable κc := 1/(α − 1) and then we examine the role of the

scaled variable κ/κc which is between 0 and 1.

Figure 6.1 studies the dependence of the Sharpe ratio on the time horizon considered.

Theorem 3.2 asserts that the optimal growth rate for the expected value of our wealth

accumulated till T is TH(1+κ)+1 for large T , which means that E[X0
T ] as a function of T

should be approximately linear on a log-log scale. Figure 6.1 confirms this implication, not

only true for large T but also for relatively small horizons of a few years, as the slopes of the

lines closely approximate the value H(1 + κ) + 1 in the theorem. The function T → E[X0
T ]

can be simulated in two different ways.

First, we generate the 104 paths split into 103 intervals/time steps, which refers to

the entire time-domain [0, T ]. Then every subset of the generated paths relates to the

proportional time-interval. For example, the first 103/2 time steps relate to the [0, T/2]

interval. This can be seen on 6.1a (subsetting technique). Second, we can use the scaling

property of the fractional Brownian motion, Bt = |a|HBat in distribution. This is shown

on 6.1b (scaling technique). Both techniques can be viewed as an estimation of the desired

expected value, but the latter one uses more data, therefore it is more precise.

The two questions that how realistic is the Sharpe ratio and how does the investment

behave for different parameters are studied on Figure 6.2 and 6.3. We define the Sharpe

ratio of the strategies φ(T, κ) again:

EX0
T (φ(T, κ))/

√
Var(X0

T (φ(T, κ)),

which converges for T large in view of Theorem 6.2.1.

Figure 6.2 shows that such Sharpe ratio remains stable for price impact away from the
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Figure 6.2: Sharpe Ratio (values in diagram) against Hurst exponent H (horizontal axis)
and the price impact α (vertical axis), for the moderate range H ∈ [0.1, 0.9] (left panel) and
for extreme values (right panels, from left H ≈ 0 to right H ≈ 1). Parameters: T = 1, σ =
0.5, λ = 0.01, κ = 0.9κc.

boundary α = 1 for moderate values of H (top panel). On the contrary, dependence on

price impact becomes significant for extreme values of H (bottom panel), leading to very

high Sharpe ratios for H near zero but to rather modest values for H near one. Figure

6.3 graphically summarizes these findings, showing how α = 1.1 leads to mediocre Sharpe

ratios, while α = 1.5 and α = 2 result in similarly large ratios.

The results in Figure 6.2 are obtained from strategies with κ = 0.9κc, and the right panel

in Figure 6.3 studies the sensitivity of the Sharpe ratio to such parameter κ. The sensitivity

to κ is higher for more nonlinear price impact (α closer to one) and very weak for linear

impact (α close to two). Sensitivity is highest for a low Hurst exponent (negative return

autocorrelation) combined with a highly nonlinear impact, in which low trading rates are

penalized and hence lower value of κ/κc are more effective.

6.4 Extension

Without going into detail, we present one extension of the above mentioned model. Other

extensions exist on the topic, for further details we suggest to read [56]. In this chapter

until now we were trading with a stock price that is a fractional Brownian motion. Its

autocorrelation structure was governed by the Hurst parameter which also determined the

decay of the autocorrelation function. The main theorem can be extended to other types of

processes where less strict requirements are required about the correlation function.

In the following assumption we introduce a definition of long memory Gaussian processes

which include, for H > 1/2, BH
t as well.

Assumption 6.4.1. The process St, t ≥ 0 is zero-mean Gaussian with stationary increments
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Figure 6.3: Left panel: Sharpe ratio (vertical axis) against Hurst exponent H for different
price impact α. Right panel: Sharpe ratio (vertical axis) against strategy exponent κ/κc ∈
(0, 1) (horizontal) for different price impact α and Hurst exponent H. Parameters: T =
1, σ = 0.5, λ = 0.01. Left panel: κ = 0.9κc.

such that

cov(Su − St, St) ≥ 0, 0 ≤ t ≤ u. (6.7)

Define the covariance function of its increments by

r(k) := cov(S1 − S0, Sk+1 − Sk), k ∈ N.

Assume that it satisfies

r(0) = 1, J1k
2H−2 ≤ r(k) ≤ J2k

2H−2, k ≥ 1, (6.8)

for some constants J1, J2 > 0 and H ∈ (1/2, 1).

This assumption is extremely helpful if we wish to define a stock price St by its in-

crements. Moreover, in numerical simulations it is enough to know the increments of the

process without knowing the exact structure of the whole continuous process. In the follow-

ing example we focus only on the definition of a discrete-time process which describe the

stationary increments of the price process.

Example 6.4.1. Let the Gaussian process Xt be a ARFIMA(p, d, q) process, which is

stationary when the memory parameter d ∈ (−1/2, 1/2). The ARFIMA(p, d, q) process can

be obtained by using an ARMA(p, q) process Zt. Let X0 = 0 and define recursively

(1−B)dXt = Zt, t ≥ 1. (6.9)

The backshift operator defined by BXt = Xt−1 and the term (1 − B)d is the fractional
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difference defined by (1−B)d :=
∑∞

k=0

(
d
k

)
(−B)k.

This example does not satisfy the Assumption 6.4.1 because of the continuous path

requirements. However, for practical reasons we will investigate in the following this pro-

cess (along with the process DGSV). The process ARFIMA(p, d, q) is frequently used in

investment practice and its statistical properties are well-known.

There is a strong relation between the fractional Brownian motion and the process in

the above example. The process ARFIMA(0, d, 0) sometimes called fractional white noise

equals to the increments of the fractional Brownian motion in distribution. More precisely,

BH
t −BH

t−1 ∼ ARFIMA(0, H − 1/2, 0). (6.10)

As we can see, there is a one-to-one function between the Hurst parameter H and the memory

parameter d. This relationship is for other values of p and q, because the autocorrelation

function of an Xt ∼ ARFIMA(p, d, q) process is

rX(k) ≈ L(k)k2d−1, k →∞, (6.11)

where L(k) is a slow-varying function, from which we conclude that

H = d+ 1/2 (6.12)

regarding the decaying speed of the autocorrelation function. As the following theorem

shows, the limit behavior of the autocorrelation function determines the strategy.

Theorem 6.4.2. Let λ > 0, α > 1. Let Assumption 6.4.1 be valid. Then

(i) Maximal expected profits satisfy

lim sup
T→∞

u(T )

TH(1+1/(α−1))+1
<∞. (6.13)

(ii) For each 0 < κ < 1/(α− 1), the strategies

φt(T, κ) :=

sgn(St)|St|κ, t ∈ [0, T/2),

− 1
T/2

∫ T/2
0 φs(T, κ) ds, t ∈ [T/2, T ]

(6.14)

satisfy

lim
T→∞

EX0
T (φ(T, κ))

TH(1+κ)+1
> 0, (6.15)

where T ranges over integers divisible by 4.
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(iii) Let m > 1/(α − 1) be an integer. There exists an increasing sequence Tn, n ≥ m

tending to ∞ such that the trading strategies

φT = φ(T, 1/(α− 1)− 1/n), Tn ≤ T < Tn+1, n ≥ m; φT := 0, 0 ≤ T < Tm

are asymptotically optimal (and the Tn can be explicitly calculated).

Theorem 6.4.2 is almost identical to Theorem 6.2.1, but the assumptions are changed.

The main messages of this theorem is that the same trading strategy needed and that the

optimal expected profit EX0
T grows with a power-law in T . The speed of this power-law

function solely depends on the characteristic of the autocorrelation of the process. It is

worth investigating other processes besides fractional Brownian motion.

Numerical results

In the Example 6.4.1 the process Xt ∼ ARFIMA(p, d, q) was characterized by the memory

term d instead of the Hurst-parameter. Because of the structure of the autocorrelation

function in the limit k → ∞, one would expect that if the Assumption 6.4.1 is true for an

ARFIMA(p, d, q) process, then the optimal expected profit is proportional to

T (d−1/2)(1+1/(α−1))+1, (6.16)

while the expected profit in case of trading with intensity κ is

T (d−1/2)(1+κ)+1. (6.17)

Because of the lack of continuous paths, Assumption 6.4.1 is not valid, therefore we ex-

pect a deviation from these growth factors. Beside the process ARFIMA(p, d, q), we also

investigated the case when the increments come from a DGSV process.

Figure 6.4a and 6.4b show the power-law dependency of EX0
T on T . The straight lines

show that in both model the expected payoff grow as a power of T . In the ARFIMA(p, d, q)

case the slopes are steeper the memory parameter d is higher, similarly to the Hurst pa-

rameter. The results are further studied and showed in Table 6.1. The exponent of T is

still depends linearly on the intensity κ and almost linearly on the memory parameter d,

but it is different from (d − 1/2)(1 + κ) + 1. Table 6.1 shows in the first two clumns the

Hurst parameter and the exponent in the fractional Brownian motion case, while the third

and fourth column show d and the numerical results of the exponent. The exponent slightly

differs from the fractional Brownian motion case: if d < 0, the exponent is higher, when

d > 0, the exponent is lower than expected.

In the case of the DGSV process we do not have any connection between the Hurst
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Figure 6.4: Expected payoff (vertical axis, in logarithmic scale) against horizon (horizontal
axis, in logarithmic scale). α = 2, σ = 0.5, λ = 0.01, κ = 0.9 1

α−1 .

parameter and the process’s memory parameter b. The results with the DGSV model does

not show any variety if b changes (despite the fact that if b > 1, the long memory behavior

turns into short memory). This is because the DGSV model was constructed in a way, to

have insignificant autocorrelation for Ht. That is, long memory effect in the volatility is not

described by the method of this chapter.

Fractional Brownian motion ARFIMA(3, d, 5)

H H(1 + κ) + 1 d
slope of the function
log(T ) ∼ log(EX0

T )
κ/κc

0.1 1.16 -0.4 1.35

0.3
0.4 1.64 -0.1 1.91
0.6 1.96 0.1 1.85
0.9 2.44 0.4 1.77

0.1 1.22 -0.4 1.43

0.6
0.4 1.88 -0.1 2.14
0.6 2.32 0.1 2.15
0.9 2.98 0.4 2.25

0.1 1.28 -0.4 1.50

0.9
0.4 2.12 -0.1 2.36
0.6 2.68 0.1 2.51
0.9 3.52 0.4 2.70

Table 6.1: Results of the linear fit on the log(T ) ∼ log(EX0
T ) plot for the model

ARFIMA(3, d, 5) based on numerical simulations (4th column). The result is compared
for each value of d with the corresponding Hurst parameter and what the fit would be for
the fractional Brownian motion. In the antipersistence case (H < 0.5 or d < 0), model
ARFIMA outperforms the fractional Brownian motion case, while in the positive memory
case (H > 0.5 or d > 0) is the opposite.
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Appendix A

Proof of Stationary Solution and

Ergodicity-like Assumption

In Chapter 2 we defined new and already existing long memory stock return models as well.

However, their definitions do not guarantee that they define mathematically well-defined

stochastic processes.

We also have not proven yet that these processes staisfy our ergodicity-like criteria in As-

sumption 3.2.3 which guarantess that the log-optimal portfolio exists. From this assumption

it follows, that with optimal strategy π∗ from Theorem 3.2.2,

lim inf
T→∞

1

T
E
[
log
(
W π∗
T

)]
= lim

T→∞

1

T
log
(
W π∗
T

)
. (A.1)

That is, instead of calculating the expected value for every T and taking the limit, it is

enough to determine the optimal strategy for only one realization.

In this chapter we show that these processes are well-defined and stationary processes in

the strong sense. Moreover, we prove that these models satisfy Assumption 3.2.3.

A.1 DGSV model

The first theorem states that the stationary solution of the DGSV dynamics, defined in

(2.9), exists almost surely.

Theorem A.1.1. There exists a stationary process X̃t, t ∈ Z satisfying

X̃t+1 = µ+ αX̃t + ρeYtηt+1 +
√

1− ρ2eYtεt+1, (A.2)
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such that X̃t is σ(ηj , εj , j ≥ t)-measurable. Defining

Qt := gπ̂(X̃t,νt,κt)(X̃t, νt, κt),

and

F (z, y, ε, η) := µ+ αz + ρeyη +
√

1− ρ2eyε,

Assumptions 3.2.1 and 3.2.3 are valid.

Proof. We follow the arguments of [58] closely. Consider the mapping

(x, y, η, ε)→ L(x, y, η, ε) := µ+ αx+ ρeyη +
√

1− ρ2eyε,

where x, y, η, ε ∈ R. This satisfies

|L(x1, y, η, ε)− L(x2, y, η, ε)| ≤ |α| |x1 − x2|

so it is a contraction. For each n ≥ 1 and for each t ∈ Z, define, by recursion,

Xt,n
t−n := 0, Xt,n

k+1 := L(Xt,n
k , Yk+1, ηk+1, εk+1), k ≥ t− n.

Set X̃n
t := Xt,n

t . Since

|X̃n
t − X̃n+1

t | ≤ |α|n|ρeYt−nηt−n +
√

1− ρ2eYt−nεt−n|,

and the right-hand side is bounded in L1, it follows by the Markov inequality that

∞∑
n=1

P (|X̃n
t − X̃n+1

t | ≥
√
|α|n) ≤

∞∑
n=1

C
|α|n√
|α|n

<∞,

with some C > 0. The Borel–Cantelli lemma implies that the sequence X̃n
t , n ∈ N is a.s. a

Cauchy sequence, hence it is convergent almost surely to some X̃t.

Since X̃n
t , t ∈ Z is easily seen to be a stationary process for each n ≥ 1, the process X̃t,

t ∈ Z is stationary, too. Notice that X̃n+1
t+1 = L(X̃n

t , Yt+1, ηt+1, εt+1) and L is continuous in

its first variable so we conclude that (A.2) indeed holds true. The claim about measurability

is clear from the construction of X̃. Theorem 3.5.8 of [59] implies that X̃ is ergodic. Actually,

that theorem implies also that Gt := (X̃t, Yt, ηt, εt), t ∈ Z is ergodic since Gt is a functional

of (εt, ηt, εt−1, ηt−1, . . .). Furthermore, as Qt is a functional of (X̃t, Yt, ηt, εt) it is also ergodic.

We now claim E|Qt| <∞. Notice that, using the Cauchy inequality,

E[|αz + ρeν+κε0ε0 +
√

1− ρ2η0|] ≤ |z|+ e2ν+2κ2 × [1 + Eη2
0] (A.3)
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and the sequence e2νt is clearly bounded in L1. Hence, by Lemma 3.2.1, it suffices to show

that the sequence X̃n
t is bounded in L1. Notice that

E[Xn,t
k+1] ≤ |α|E[Xn,t

k ] + E[eYk+1 [|ηk+1|+ |εk+1|]] ≤ |α|E[Xn,t
k ] + C

for some C > 0 which easily implies that all the Xn,t
k are bounded in L1, which shows our

claim.

Now Assumption 3.2.1 simply holds as

sup
z,ν,κ∈[−N,N ]3

|F (z, ν + κε0, ε0, η0)| ≤ N + eN+κ|ε0| × [|ε0|+ |η0|]

which clearly has a finite expectation.

A.2 BARCH model

We do not prove that there exists a stationary and ergodic solution for the model in (2.18)

because the model has a more general form described in [36].

Theorem A.2.1. There exists a stationary process X̃t, t ∈ Z satisfying

X̃t = µ+ αX̃t−1 +

a+ b0

∞∑
j=1

j−bX̃t−j

 ηt, (A.4)

such that µ 6= 0, η ∼ N (0, 1) and |α| < 1. We also assumethat the constants satisfy the

inequality (
b0

1− α
ζ(2b)

)2

< 1, (A.5)

where the function ζ(·) is the (Euler–)Riemann zeta function, which is defined as ζ(s) :=∑∞
n=1 n

−s. Morover, this process is also ergodic and its expected value is E[X̃t] = µ/(1−α).

Proof. See Propositions 2.4 and 2.7 of [36].

Ergodicity of the log-return and its finite first moment is a necessary condition but not

sufficient. The proof of the previous model does not work here, because the function Z(·)
has infinitely many variables (Ht, Ht−1, . . . , ηt+1). Nevertheless, numerical results suggests

that ergodicity of Ht in the BARCH model is also sufficient.
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Appendix B

Moments of the Discrete Gaussian

Stochastic Volatility

Typically, the more complex a stochastic process’s dynamics, the more difficult it is to

calculate its moments. In addition to the DGSV model having realistic properties, we are

able to calculate its conditional and unconditional moments. Since the calculations are

similar for every moment, only the conditional mean and mean are presented in details.

We recall the definition of the DGSV model:

Ht = µ+ αHt−1 + σeYt
(
ρεt +

√
1− ρ2ηt

)
. (B.1)

In order to calculate the uncodnitional moments, we need to assume that the process is

stationary. In Appendix A we proved that the stationary solution exists, therefore we can

assume without loss of generality that the process Ht is stationary. (In simulations this is

usually achieved by starting from an arbitrary point, then dropping the first several values

when the process is far from its stationary distribution.)

As we mentioned in Subsection 2.5.3, the key aspect to calculating the moments is the

appearance of the term E[eKεεk] during the derivation of the k-th moments, where K is a

real number and ε is a Gaussian variable with zero mean and unit variance. We remind the

reader about the following identity

E[eKεεj ] = eK
2/2E[(ε+K)j ].

For example, when j = 1, the expected value is equal to eK
2/2K, and for j = 2, it is equal

to eK
2/2(1 +K2).
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B.1 Conditional mean

We are interested in the conditional mean of the DGSV process Ht. Taking the conditional

expectation of both sides in (B.1) we have

E[Ht|Ft−1] = µ+ αE [Ht−1|Ft−1] + E
[
σeYt

(
ρεt +

√
1− ρ2ηt

)
|Ft−1

]
,

where we made use of the fact that the conditional expectation operator is linear. Since

Ht−1 is Ft−1-measurable and that E[ηt|Ft−1] = 0, we get that

E[Ht|Ft−1] = µ+ αHt−1 + σρE[eYtεt|Ft−1].

The variable Yt is defined as a linear function of the Gaussian i.i.d noises εt, εt−1, . . . , that

is Yt :=
∞∑
j=0

βjεt−j . Moreover, Yt equals νt−1 + κε in distribtion, where νt−1 :=
∞∑
j=1

βjεt−j

and κ = β0. It follows that

E[eYtεt|Ft−1] = E[eνt−1+κεε|Ft−1] = eνt−1E[eκεε] = eνt−1κeκ
2/2;

in the second equation we used the property that ε is independent of the σ-algebra Ft−1.

From the above equations we can conclude that the conditional mean is

E[Ht|Ft−1] = µ+ αHt−1 + ρσκeνt−1+κ2/2. (B.2)

B.2 Unconditional mean

So far, we have not made use of the process Ht being a stationary process. From the

stationarity property, it follows that the mean is constant in time that is E[Ht] = E[Ht−1]

for all t ∈ Z.

Using the tower-rule we can calculate the unconditional mean of the process Ht. For

those readers who are unfamiliar with term tower-rule, we suggest Appendix C. From the

tower-rule it follows that

E[E[Ht|Ft−1]] = E[Ht].

Let us take the expected value of both sides in (B.2) then we have

E[Ht] = µ+ αE[Ht−1] + E
[
ρσκeνt−1+κ2/2

]
.
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Since E[Ht] equals E[Ht−1]

E[Ht] = µ+ αE[Ht] + E
[
ρσκeνt−1+κ2/2

]
.

After grouping the terms which contain the expected value on the left hand side, we have:

E[Ht]− αE[Ht] = µ+ E
[
ρσκeνt−1+κ2/2

]
.

We assumed that |α| < 1, therefore the term (1 − α) is never zero and we can divide by it,

hence

E[Ht] =
µ+ E

[
ρσκeνt−1+κ2/2

]
1− α

. (B.3)

In the numerator the constants ρ, σ, κ and eκ
2/2 can be written outside of the expected

value: ρσκeκ
2/2E [eνt−1 ]. Since νt−1 is a linear function of i.i.d. Gaussian variables with unit

variance and zero mean, therefore

E [eνt−1 ] = E

e ∞∑j=1
βjεt−j

 = E

 ∞∏
j=1

eβjεt−j

 =
∞∏
j=1

E
[
eβjεt−j

]
=
∞∏
j=1

eβ
2
j /2 = e

∞∑
j=1

β2
j /2

.

As kappa = β0 we conclude that the mean is

E[Ht] =
µ+ ρσβ0e

∞∑
j=0

β2
j /2

1− α
. (B.4)

The reason for using two different notations for the same contant, κ and β0, which are

equal to each other, is to emphasize that the current value in the conditional moments

depends on the conditional standard deviation of Yt, namely κ, while in the unconditional

moments we use the constants from the definition of that process, namely β0.
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Appendix C

Conditional Probability

Because the concept of conditional probability is fundamental to understanding all chapters

of this thesis, in this chapter we would like to briefly introduce the topic of conditional

probability and expectation for the benefit of those who might not have a strong background

in mathematics.

A substantial part of the thesis focuses on numerical results; therefore, it is essential to

connect the probability theory concepts with their numerical implementations.

Section C.1 introduces the concept of conditional expected value at such a level that it

is needed to understand for the statements of the thesis (especially in Chapter 3). Then,

in section C.2, we describe how we calculated numerically certain concepts of probability

theory.

C.1 Conditional expected value in general

We present the general definition in the case when the random variable X has finite second

moment. In this case, conditional expectation is equivalent to an orthogonal projection.

Definition C.1.1. Let X be a random variable defined on the probability space (Ω,F ,P) with

finite second moments. The conditional expectation Z : E[X|G] is an orthogonal projection

on the sub-space (Ω,G,P).

A property of this definition is, if the random variable Y is defined on (Ω,G,P), then

E[XY ] = E[ZY ].

This formula is used to further generalize the definition which we exclude here.

Important properties of the conditional expectation:

• Linearity: E[aX1 + bX2|G] = aE[X1|G] + bE[X2|G] for any a, b ∈ R.
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• Best prediction: the random variable E[X|G] minimizes the expression E[(X − Y )2]

among all G-measurable random variable Y .

• Tower rule: Let H ⊆ G ⊆ F increasing σ-algebras, then E[E[X|G]|H] = E[X|H].

The mostly used property in this dissertation is the last one. We note that it also includes

the case when H = F , that is, instead of calculating the expected value, sometimes it is

easier for first to calculate a conditional expected value then taking its expected value.

C.2 Numerical implementation of expectations

In numerical simulations it is often required to estimate the values of the moments, either

conditional or unconditional. In the case of a random variable, the expected value is usually

estimated by the average of an i.i.d. sample X(1), X(2), . . . , X(N):

1

N

N∑
i=1

X(i).

The i-th realization of the random variable X is denoted as X(i). In a general settings where

an i.i.d. sample is not available it may fail to give an unbiased estimation of the expected

value. In the formal chapters the numerical approximations gave unbiased estimations but

we exclude its proof here.

For stochastic processes, the estimation consists of two things: average in time and

average in realizations. Then the expected value of a stationary process Xt is estimated by

1

TN

T∑
t=1

N∑
i=1

Xt(i).

Since we chose the initial value to be a constant, therefore it takes a while for the process

to be stationary. For this reason we typically chose a much larger T than N .

For example, in Chapter 5 where we calculated the function g(θ) := E[Ht1{Ht−1>θ}], it

was estimated as

1

TN

T∑
t=1

N∑
i=1

Ht(i)1{Ht−1(i)>θ},

for some values of θ.

The autocorrelation function was estimated in two way:

1

T − τ

T−τ∑
t=1

Xt+τ (i)Xt(i)−

(
1

T

T∑
t=1

Xt(i)

)2

,
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if we were interested in the autocorrelation of only one realization (like in Chapter 4) and

the other way was

1

N

N∑
i=1

[
1

T − τ

T−τ∑
t=1

Xt+τ (i)Xt(i)− (
1

T

T∑
t=1

Xt(i))
2

]
.
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supérieure, vol. 17, 1900, pp. 21–86.

[29] B. Mandelbrot, “New methods in statistical economics,” Journal of political economy,

vol. 71, no. 5, pp. 421–440, 1963.

[30] N. Shephard, Stochastic volatility: selected readings. Oxford University Press, 2005.

[31] T. G. Andersen, R. A. Davis, J.-P. Kreiss, and T. V. Mikosch, Handbook of financial

time series. Springer Science & Business Media, 2009.

[32] P. M. Robinson, “Testing for strong serial correlation and dynamic conditional het-

eroskedasticity in multiple regression,” Journal of Econometrics, vol. 47, no. 1, pp.

67–84, 1991.

[33] F. J. Breidt, N. Crato, and P. De Lima, “The detection and estimation of long memory

in stochastic volatility,” Journal of Econometrics, vol. 83, no. 1, pp. 325–348, 1998.

[34] F. Comte, C. Lacour, and Y. Rozenholc, “Adaptive estimation of the dynamics of a

discrete time stochastic volatility model,” Journal of Econometrics, vol. 154, no. 1, pp.

59–73, 2010.

[35] P. Guasoni, Z. Nika, and M. Rásonyi, “Trading Fractional Brownian Motion,” Preprint,

SSRN:2991275, 2017.

[36] L. Giraitis and D. Surgailis, “ARCH-type bilinear models with double long memory,”

Stochastic Processes and their Applications, vol. 100, no. 1, pp. 275–300, 2002.

[37] O. Hernández-Lerma and J. B. Lasserre, Discrete-Time Markov Control Processes.

Springer, 1996.

[38] I. Vajda, “Analysis of semi-log-optimal investment strategies,” in Prague Stochastics,

2006, pp. 719–727.

[39] B. Li and S. C. Hoi, “Online portfolio selection: A survey,” ACM Computing Surveys

(CSUR), vol. 46, no. 3, p. 35, 2014.

89

DOI:10.15774/PPKE.ITK.2021.009



[40] L. Györfi, A. Urbán, and I. Vajda, “Kernel-based semi-log-optimal empirical portfolio

selection strategies,” International Journal of Theoretical and Applied Finance, vol. 10,

no. 03, pp. 505–516, 2007.

[41] M. H. Davis and S. Lleo, Risk-sensitive Investment Management. World Scientific,

2014.

[42] A. C. Cameron and P. K. Trivedi, Microeconometrics: methods and applications. Cam-

bridge University Press, 2005.

[43] I. Aldridge, High-frequency trading: a practical guide to algorithmic strategies and trad-

ing systems. John Wiley & Sons, 2013, vol. 604.

[44] M. L. De Prado, Advances in financial machine learning. John Wiley & Sons, 2018.

[45] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of math-

ematical statistics, pp. 400–407, 1951.

[46] J. Kiefer, J. Wolfowitz et al., “Stochastic estimation of the maximum of a regression

function,” The Annals of Mathematical Statistics, vol. 23, no. 3, pp. 462–466, 1952.

[47] Z. Zhang, G. Yin, and Z. Liang, “A stochastic approximation algorithm for american

lookback put options,” Stochastic Analysis and Applications, vol. 29, no. 2, pp. 332–351,

2011.

[48] G. Yin, Q. Zhang, F. Liu, R. Liu, and Y. Cheng, “Stock liquidation via stochastic

approximation using nasdaq daily and intra-day data,” Mathematical Finance: An

International Journal of Mathematics, Statistics and Financial Economics, vol. 16,

no. 1, pp. 217–236, 2006.

[49] Y. Chow and M. Ghavamzadeh, “Algorithms for cvar optimization in mdps,” in Ad-

vances in neural information processing systems, 2014, pp. 3509–3517.

[50] S. Laruelle and G. Pagès, “Stochastic approximation with averaging innovation applied

to finance,” Monte Carlo Methods and Applications, vol. 18, no. 1, pp. 1–51, 2012.

[51] A. Kibzun and R. Lepp, “Discrete approximation in quantile problem of portfolio se-

lection,” in Stochastic Optimization: Algorithms and Applications. Springer, 2001, pp.

121–135.

[52] S. Laruelle, C.-A. Lehalle, and G. Pages, “Optimal split of orders across liquidity pools:

a stochastic algorithm approach,” SIAM Journal on Financial Mathematics, vol. 2,

no. 1, pp. 1042–1076, 2011.

90

DOI:10.15774/PPKE.ITK.2021.009



[53] D. Burkholder, “On a class of stochastic approximation processes,” The Annals of

Mathematical Statistics, pp. 1044–1059, 1956.

[54] V. Fabian, “Stochastic approximation,” in Optimizing methods in statistics. Elsevier,

1971, pp. 439–470.

[55] J. Sacks, “Asymptotic distribution of stochastic approximation procedures,” The An-

nals of Mathematical Statistics, vol. 29, no. 2, pp. 373–405, 1958.

[56] P. Guasoni, Z. Nika, and M. Rasonyi, “Trading fractional brownian motion,” SIAM

Journal on Financial Mathematics, vol. 10, no. 3, pp. 769–789, 2019.
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