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1 Introduction
Dynamical models allow us to understand and effectively influence
(control) physical, biological and social processes taking place in the
world. In practice, we usually have uncertain and often nonlinear mod-
els that are difficult to analyse and control. Fortunately, the avail-
ability of complex computational tools and the new theoretical results
provide new opportunities for dealing with uncertain nonlinear sys-
tems. This thesis presents new numerical methods to perform stability-,
performance- and passivity analysis of nonlinear uncertain dynamical
systems. Though the specified topics are related to different problems
(internal stability, input-to-output behaviour, dynamic invertibility),
they are connected at the level of the general approach, which is dis-
sipativity theory. Therefore, a common computational framework is
presented throughout the dissertation (based on) Finsler’s lemma to
address three different nonlinear problems in the field of analysis and
filtering of a wide class of dynamical systems. These problems are listed
as follows.

I. Domain of attraction estimation. Finding or at least approxi-
mating the domain of attraction (DOA) of a locally stable equilibrium
point of a nonlinear dynamical system is an important but also a non-
trivial task in model analysis and controller design/evaluation. The
stability properties of dynamical systems are most often studied us-
ing Lyapunov functions, accordingly, the computational construction
of Lyapunov functions has been addressed extensively in the literature.
The most closely related results for DOA estimation are presented by
Trofino and Dezuo [19], who used a polytopic relaxation approach com-
bined with Finsler’s lemma and affine annihilators to find a Lyapunov
function. Then, the estimate is given by the largest invariant level set
of the computed Lyapunov function.

II. Induced L2-norm analysis. It is natural in many control prob-
lems to involve finite-energy signals in the analysis and target induced
L2 gain to measure the effect of disturbance attenuation. Hence, this
metric is of potential interest for applications and can be quantified for
a wide range of dynamic systems, linear or nonlinear problems. (Based
on) Finsler’s lemma, Coutinho et al. [20] presented a computational
analysis and controller synthesis approach for a wide class of nonlinear
uncertain models.
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III. Passivity analysis. The importance of passivity of a dynamical
system has been recognized in the literature [21] due its advantageous
properties related to stable zero dynamics (minimum phase property),
internal stability and (vector) relative degree 1. These system proper-
ties give rise to stable input-output linearization of nonlinear (possibly
uncertain) systems and provide stable dynamic inversion. Furthermore,
the relative degree 1 property allows unknown input reconstruction by
computing only the first derivative of the output vector. Though the
L2-gain techniques for linear parameter varying (LPV) systems has an
extended literature, passivity theory of [21] is not fully covered for LPV
models.

General dissipativity theory. The Lyapunov stability, passivity and
finite L2-norm property of a dynamical system can all be checked by
solving the dissipativity relation with respect to the appropriate supply
rate functions [22]. In the general case of nonlinear systems, the dissipa-
tivity relation is a nonlinear state- and parameter-dependent inequality
constraint, that generally cannot be solved in a convex computational
framework.

To address these typically non-convex problems, different relaxation
techniques were introduced in the last two decades. The grid-based ap-
proaches [23] give only an approximate solution of the nonlinear prob-
lem. Other methods formulate convex but only sufficient conditions to
find a (conservative) solution for the nonlinear problem.

For rational or polynomial parameter-dependent nonlinear models,
the sum-of-squares (SOS) method can account for DOA estimation [24],
dissipativity-based system analysis (e.g. induced L2-norm calculation)
and controller synthesis [25]. Though the SOS algorithm is promising
and its extension to rational systems is possible, it is computationally
demanding and may require bilinear or iterative LMI algorithms.

In the LPV-community, the multiplier approach with the linear
fractional transformation (LFT) is customary for stability analysis [26]
nominal performance analysis and robust controller design [27]. The
multiplier approach is (based on) frequency-domain considerations, it
formulates frequency-domain conditions, so-called integral quadratic
constraints (IQC) for dissipativity. In order to generate equivalent
time-domain (not affine) parameter-dependent LMI (PD-LMI) condi-
tions, the well-known Kalman-Yakubovich-Popov lemma is used. To
find a possibly conservative solution for the final non-convex PD-LMI
problem, the so-called D-G scaling is used in [26].

Motivation and aims. The grid-based approach, the IQC frame-
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work or the SOS approach, are all relaxation techniques to solve non-
convex PD-LMI conditions. As it was shown by Trofino and Dezuo [19],
Finsler’s lemma together with affine annihilators and polytopic LMIs is
also a promising alternative to handle nonlinear parameter dependence
in the LMI expressions.

The main methodological questions related to Lyapunov-based so-
lution for rational nonlinear (or LPV) systems can however still be
improved in terms of conservatism, computational tractability and au-
tomation:

1. It is essential to find systematic construction methods for parameter-
dependent Lyapunov/storage function candidate.

2. It is important to appropriately parameterize the problem to re-
duce conservatism.

3. The solution should preserve convexity (finite number of convex
constraints) and at the same time it should have dimension re-
duction features without compromising accuracy.

2 Basic notions
We consider multiple-input multiple-output (MIMO) nonlinear uncer-
tain systems written in the following quasi-linear parameter varying
(qLPV) form:(

ẋ(t)
y(t)

)
=

K∑
j=1

q1j

(
x(t), p(t)

)
q2j

(
x(t), p(t)

) (Aj Bj

Cj Dj

)(
x(t)
u(t)

)
, with x(0) ∈ X , (1)

where x(t) ∈ Rnx , u(t) ∈ Rnu , y(t) ∈ Rny , and p(t) ∈ Rnp are the state,
input, output, and the scheduling parameter signals, respectively, and
X is a compact polytopic subset of the state space Rnx satisfying 0 ∈ X .
Scalar functions q1j and q2j in (1) are multivariate polynomials with
q11 = q21 = 1. We assume that q2j(x, p) > ε for all j ≥ 2, for all
(x, p) ∈ X × P, and for some ε > 0. We assume further that the
parameter trajectory p(t) is bounded and real-time available with a
bounded time derivative, more specifically, p(t) ∈ P and ṗ(t) ∈ R,
where P and R are compact polytopic subsets of the parameter space
Rnp .

The equations of system (1) can also be written in a state-space
form with well-defined rational state- and parameter-dependent matri-
ces A(x, p), B(x, p), C(x, p), D(x, p) (of appropriate dimensions), as
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follows:

Σ :
{
ẋ = A(x, p)x+B(x, p)u
y = C(x, p)x+D(x, p)u

. (2)

In the following definition, we introduce the general notion of local
dissipativity [28].

Definition 1 (dissipativity). Let α, α, α : R → [0,∞) be some class
K functions (non-negative increasing and being zero at ‖x‖ = 0). Let
U denote a set of input functions. System Σ with u ∈ U is said to
be locally strictly dissipative with respect to the supply rate s(u, y) if
there exists (a possibly parameter-dependent) function V (x, p), called
the storage function satisfying
α(‖x‖) ≤ V (x, p) ≤ α(‖x‖), for all (x, p) ∈ X × P, (3a)

such that
d
dt
V (x, p) ≤ −α(‖x‖) + s(u, y), for all (x, p, ṗ) ∈ X × P ×R, (3b)

and all u ∈ Rnu , furthermore, the state trajectory x(t) remains inside
X for all u ∈ U. System Σ is said to be locally dissipative if (3b) holds
for α ≡ 0. �

Definition 2 (strict passivity). System Σ is strictly passive if it is
strictly dissipative w.r.t. the supply rate s(u, y) = 2u>y. �

Theorem 3 (local asymptotic stability). The equilibrium point
x∗ = 0 of system Σ with u(t) = 0 is locally asymptotically stable if
Σ is locally strictly dissipative with supply rate s(u, y) = 0. �

Theorem 4 (nominal L2 performance). A system Σ is said to have
finite L2 gain smaller than or equal to γ if it is dissipative with respect
to the supply rate s(u, y) = γ2‖u‖2 − ‖y‖2. �

Consequently, the stability, passivity and performance analysis of
a nonlinear uncertain system Σ can be performed by searching for a
storage function V (x, p), that satisfies the dissipativity properties (3)
with the appropriate supply rate function s(u, y).
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2.1 Problem formulation
In order to prove local/global dissipativity for Σ, we compute a storage
function candidate (SFC) for Σ, that is structured as follows:

V (x, p) = x>Q(x, p)x, with Q(x, p) = Π>(x, p)Q(p)Π(x, p),
such that Q(x, p) � 0 for all (x, p) ∈ X × P, (4)

whereQ(p) = Q0 +
∑np

i=1 Qipi ∈ Rm×m is a symmetric affine parameter-
dependent matrix, with free decision variables in Qi, and the so-called
“generator” Π = Π(x, p) ∈ Rm×nx is a fixed rational matrix in the state
and parameter variables. Operator � 0 in (4) denotes that the matrix
on the left-hand-side is positive definite.

Eq. (4) constitutes a parameter- (x and p) dependent LMI in a
special quadratic form. However, the expression in (4) is rational in
x and p. The dissipativity relation (3b) can also be formulated in a
similar quadratic form.

In order to formulate a polytopic (affine in x and p) PD-LMI, first we
find an affine annihilator matrix N(x, p), that satisfies N(x, p)Π(x, p) =
0 for all (x, p) ∈ X ×P. It is obvious that Q(p) satisfies (4) if it solves
the following affine PD-LMI:

Q(p) + LN(x, p) +N>(x, p)L> � 0 for all (x, p) ∈ X × P, (5)
where L is a free matrix Lagrange multiplier. The inequality in (5) is
only a sufficient (hence conservative) condition for (4). It was already
shown in [19], that a well-chosen annihilator N(x, p) can reduce the
conservatism of (5).

We have three important sources of freedom in the model descrip-
tion. Firstly, we have to a-priori fix the structure of V (x, p) through
the rational matrix Π(x, p). Secondly, we have to chose a “good” an-
nihilator for Π(x, p) to reduce the conservatism of (5). Finally, poly-
tope X should be chosen, where the dissipativity analysis is performed.
The choice of Π(x, p) is obviously a trade-off between computational
complexity and conservatism, as it directly affects the richness of the
structure of the storage function candidate. On the other hand, it does
not make such a difficult choice to select a good annihilator for a fixed
rational generator Π(x, p).
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3 New scientific contributions and thesis
points

The major focus in the dissertation is put on the computational tech-
niques to systematically formulate a dimensionally reduced but less
conservative convex constraint to find a solution for a nonlinear prob-
lem. These numerical methods are adapted to stability analysis, per-
formance estimation and passivating output projection synthesis.

The main contributions and the proposed thesis points of my doc-
toral dissertation are summarized in this section.

I. Based on the linear fractional transformation (LFT) and
Finsler’s lemma, I have proposed a novel computational
framework to model and solve a parameter-dependent
matrix (in)equality constraint, which is affine in the un-
known variables and rational in the parameters. I formu-
lated sufficient linear matrix inequality (LMI) or equality
(LME) constraints to find a possibly conservative solu-
tion for the rationally parameter-dependent inequality or
equality condition, respectively.

A) I proposed both a symbolical and a numerical method to
compute a basis for the parameter independent (i.e., con-
stant) kernel space of a so-called generator, which constitutes
a well-defined rational matrix-valued function of the param-
eters appearing in the rational parameter-dependent matrix
(in)equality constraint. The algorithm is also applicable if the
parameter values are restricted to a subset of the parameter
space [P1].

B) I have introduced the notion of a maximal annihilator to re-
duce the conservatism of the formulated sufficient LMI/LME
constraints. I have proved the existence of a non-unique max-
imal annihilator for a fixed generator. I have shown that the
maximal annihilator provides the largest possible degree of
freedom for the sufficient convex condition. Based on the
constant kernel computation technique, I proposed a numeri-
cal method to compute a maximal annihilator for a generator
[P1; P3].

C) I have introduced the notion of a minimal generator to reduce
the dimensionality of the generated sufficient convex condi-
tions. The minimal generator determines the minimum size
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of the LMI/LME that can be attained by a projection trans-
formations without affecting the solution set of the sufficient
convex constraint [P1].

D) To compute a minimal generator and the corresponding LMI
dimension reduction transformation, I proposed an efficient
numerical method based on the constant kernel computation
technique [P1; P2; P4].

Related publications: [P1; P2; P3; P4].
II. I have designed a systematic procedure to compute ro-

bust stability domain (RSD) for nonlinear rational un-
certain systems.

A) I have proposed a general quadratic structure for Lyapunov
function candidates obtained from the LFR realization of the
nonlinear system model. For model dimension reduction, I
used the technique proposed in thesis point I.D. I have shown
that this technique results in a significant dimension reduc-
tion of the optimization problem compared to other known
solutions in the literature [P3].

B) I extended the proposed RSD computation method to discrete-
time nonlinear systems [P2].

Related publications: [P2; P3; P4; P5; P6; P8; P13; P16].
III. I have introduced new computational methods for in-

duced L2-gain and passivity analysis of linear parameter-
varying (LPV) and nonlinear state-space models in a quasi-
LPV form.
A) I proposed a novel method to compute an upper bound on

the induced L2 norm of a nonlinear rational uncertain sys-
tem [P1; P14]. Through numerical examples, I have demon-
strated that the proposed approach is able to provide a tighter
upper bound than the state-of-the-art IQC approach with
parameter-dependent storage functions and swapping lemma
(Köroğlu and Scherer, 2006; Scherer et al., 2008; Pfifer and
Seiler, 2016), the descriptor approach (Masubuchi and Suzuki,
2008), or the method of (Coutinho et al., 2008) for nonlinear
systems.

B) I have shown that a feedback (strictly) passive LPV model
has relative degree 1 and an (asymptotically) stable zero dy-
namics. I proposed an LFT-based approach to compute a
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parameter-dependent state transformation, which leads the
LPV state-space model into a special normal form advanta-
geous for dynamic inversion and input reconstruction [P7].

C) I formulated sufficient LMI and LME constraints to guarantee
strict passivity or feedback strict passivity of a rational LPV
system [P7].

D) I proposed a passivating structured output selection method
for an asymptotically stable rational LPV system. I devel-
oped a method to perform stable dynamic inversion for ra-
tional LPV systems [P7].

Related publications: [P1; P7; P14].

4 Application possibilities
Due to the fact that we considered a wide class of nonlinear uncertain
systems, there are numerous application possibilities of the proposed
techniques.
Dynamic invariants. The maximal annihilator selection algorithm could
be extended in a fairly straightforward way to find polynomial/rational
maximal annihilators with a fixed (but parameterized) structure. Us-
ing such a (not necessarily affine) maximal annihilator, we could be
able to compute dynamic invariants (i.e. functions of the state and pa-
rameters that do not change their value along the system trajectories).
Dynamic invariants make room to compute analytically the control-
lable manifold of a partially controllable system by using the method
of characteristics. /

Stability of interconnected systems. In general systems theory, the small-
gain theorem and the passivity results have a central role in dynamical
analysis and control, with a particular importance in interconnection-
based techniques. The small-gain theorem states that a feedback in-
terconnected system is stable if the product of induced L2-norm of the
two individual system is less than 1. /

Dynamic inversion and fault diagnosis. Inversion-based fault detection
of general LPV models are not fully covered due to the possible aggres-
sive parameter dependence in the dynamic equation. However, the
proposed passivating output selection makes possible to design a sta-
ble dynamic inversion filter, which is able to reconstruct the unknown
(possibly fault) input. /
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