
DOCTORAL THESIS

Synergy-Based Software Project Scheduling Problem:
Formalization, Simulation, and Solution

AUTHOR:

MARCELL TAMÁS KURBUCZ

SUPERVISOR:

Prof. Zsolt Tibor Kosztyán, Ph.D.

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE

DOCTORAL SCHOOL IN MANAGEMENT SCIENCES
AND BUSINESS ADMINISTRATION

UNIVERSITY OF PANNONIA
FACULTY OF BUSINESS AND ECONOMICS

DEPARTMENT OF QUANTITATIVE METHODS
VESZPRÉM, HUNGARY

19 May 2021

DOI:10.18136/PE.2021.781

Synergy-Based Software Project Scheduling Problem:

Formalization, Simulation, and Solution

Thesis for obtaining a Ph.D. degree in the Doctoral School in Management Sciences and Business

Administration of the University of Pannonia

in the branch of Management Sciences

Author: Marcell Tamás Kurbucz

Supervisor: Prof. Zsolt Tibor Kosztyán, Ph.D.

propose acceptance (yes / no) ...

 (supervisor)

As a reviewer, I propose acceptance of the thesis:

Name of Reviewer .. yes / no

 ...

 (reviewer)

Name of Reviewer: yes / no

 ...

 (reviewer)

The Ph.D. candidate has achieved .. % at the public discussion.

Veszprém, ...

 (Chairman of the Committee)

The grade of the Ph.D. Diploma …....................................... (%)

Veszprém,
 ...

 (Chairman of UDHC)

Abstract

SYNERGY-BASED SOFTWARE PROJECT SCHEDULING PROBLEM:
FORMALIZATION, SIMULATION, AND SOLUTION

The adequate allocation of human resources is one of the most important success
factors in software projects. Although project teams can be regarded as complex
systems where a team’s performance is highly influenced by the interdependencies
among team members, the allocation methods applied to date have focused only on
the individual skills and consider project teams as units of isolated workers. The
existing software project scheduling problem (SPSP) is extended to (1) consider
different levels of skills of employees and (2) the pairwise synergies between them,
as well as to (3) handle the flexible structure of a project, which is used in flexible
management such as agile project management. To better understand the impact
of synergies on the project’s cost, the solutions of the classical and extended SPSP
versions are analyzed and compared on the generated project networks. The results
show not only that this factor has a highly significant impact but also that the project
cost strongly depends on the structural parameters of the synergy network (e.g.,
topology, network size and degree centrality). Among these parameters, low degree
centrality and some topologies, most notably star and circular networks, obtained
the highest reduction in the projects’ total cost.

Keywords: Software Project Scheduling; Staffing; Synergy Network; Social Net-
work; Genetic Algorithm

iv

Resumen

PROBLEMA DE PROGRAMACIÓN DE PROYECTOS DE SOFTWARE BASADO
EN SINERGIAS: FORMALIZACIÓN, SIMULACIÓN Y SOLUCIÓN

La adecuada asignación de recursos humanos es uno de los factores de éxito más
importantes en los proyectos de software. Aunque los equipos de proyecto pueden
considerarse sistemas complejos en los que el desempeño de un equipo está muy
influenciado por las interdependencias entre los miembros del equipo, los métodos
de asignación aplicados hasta la fecha se han centrado solo en las habilidades in-
dividuales y consideran a los equipos de proyecto como unidades de trabajadores
aislados. El problema de programación de proyectos de software existente (SPSP)
se amplía para (1) considerar los diferentes niveles de habilidades de los emplea-
dos y (2) las sinergias por pares entre ellos, así como para (3) manejar la estructura
flexible de un proyecto, que se utiliza en la gestión flexible como la gestión ágil
de proyectos. Para comprender mejor el impacto de las sinergias en el costo del
proyecto, las soluciones de las versiones SPSP clásicas y extendidas se analizan y
comparan en las redes de proyectos generadas. Los resultados muestran no solo
que este factor tiene un impacto muy significativo, sino también que el costo del
proyecto depende en gran medida de los parámetros estructurales de la red de sin-
ergia (por ejemplo, topología, tamaño de la red y grado de centralidad). Entre estos
parámetros, la centralidad de bajo grado y algunas topologías, entre las que destacan
las redes en estrella y circulares, obtuvieron la mayor reducción en el costo total de
los proyectos.

Palabras Clave: Programación de Proyectos de Software; Dotación de Personal;
Red de Sinergia; Red Social; Algoritmo Genético

v

Contents

Chapter 1 Introduction 1
1.1 Motivation of the Thesis . 1
1.2 Research Questions . 3
1.3 Structure of the Thesis . 3

Chapter 2 Related Studies 4
2.1 Project and Project Management . 4

2.1.1 Basic Definitions . 4
2.1.2 Project Life Cycle . 6
2.1.3 Triple Constraint of Project Management . 8
2.1.4 Types of Projects . 8
2.1.5 Project Management Approaches. 10

2.2 Project Planning Problems and Techniques . 13
2.2.1 Project Scheduling Problem . 13
2.2.2 Human Resource Allocation Problem . 15
2.2.3 Matrix-Based Flexible Planning . 16

2.3 Software Project Scheduling Problem . 18
2.3.1 Reference Model . 19
2.3.2 Structure . 20
2.3.3 Objective . 24
2.3.4 Optimization . 26

2.4 Project Team Composition and Effectiveness . 28
2.4.1 Individual Characteristics Approach . 28

2.4.1.1 Knowledge, Skills, and Abilities . 29
2.4.1.2 Personality . 29

2.4.2 Jigsaw Puzzle Approach . 30
2.4.2.1 Team Roles . 31
2.4.2.2 Personal Compatibility . 33

2.5 Sociometry and Synergy Networks . 34
2.6 Research Assumptions . 36

Chapter 3 Methods 38
3.1 Formal Description of the (S)SPSP . 38

3.1.1 Notation . 39
3.1.2 Formalism Related to Project Duration . 45

vi

CONTENTS vii

3.1.3 Formalism Related to the Project Cost . 48
3.1.4 Constraints . 48
3.1.5 Objective Function . 52
3.1.6 Summary of Notations . 53

3.2 Proposed Hybrid Genetic Algorithm . 55
3.2.1 Parameters of the SynAPS . 56

3.3 Proposed Simulation Framework . 60
3.3.1 Specifying Problem Sets . 60

3.3.1.1 Specification of the SMM . 60
3.3.1.2 Calculation of Constraints . 62

3.3.2 Solving Problems . 63

Chapter 4 Results and Discussion 64
4.1 Answering the Research Questions . 64
4.2 Research Theses . 69

Chapter 5 Practical example 71
5.1 Problem Definition . 72
5.2 Specification of the SMM . 73
5.3 Results . 75

Chapter 6 Threats to Validity 77

Chapter 7 Summary and Conclusion 79
7.1 Summary . 79
7.2 Conclusion . 80

7.2.1 Contribution to the Literature . 80
7.2.2 Practical Implications . 82

Chapter 8 Limitations and Future Research 83

Bibliography 84

Appendix 107
A.1 Correlation of Independent Variables . 107
A.2 Predictor Importance in Additional Model . 107
A.3 Electronic Supplementary Material . 108

List of Figures

1 Project life cycle . 7

2 Triple constraint of project management . 8

3 Typology of projects . 9

4 Project management approaches in terms of goal and solution 11

5 Comparison of TPM and APM . 12

6 Multi-domain matrix (MDM) . 17

7 UML class diagram of the SPSP . 19

8 DSM and network representation of pairwise synergies 36

9 Synergy-based multi-domain matrix (SMM). 40

10 Structure of a chromosome . 57

11 Research model . 66

12 Relative importance of the various predictors . 67

13 Effect of sociometric structures on the project cost . 68

14 SMM of the practical example . 76

A.1 Relative importance of various predictors (additional model) 107

List of Tables

1 Key differences between TPM and APM . 12

2 Project success rates in traditional and agile IT projects 13

3 Structural differences between planning models . 21

4 Differences in optimization objectives . 25

5 Optimization algorithms. 26

6 Descriptions of Belbin team roles . 32

7 Analyzed centrality and proximity metrics . 44

8 Tasks of the software development sprint . 73

9 Available employees . 74

10 Comparison of the shortest project scenarios . 75

11 Research questions, assumptions and theses . 81

A.1 Kendall rank correlation of independent variables . 107

viii

List of Acronyms

APM: agile project management

CPM: critical path method

DMM: domain mapping matrix

DSM: dependency/design structure matrix

FIRO-(B): fundamental interpersonal relations orientation (behavior)

GA: genetic algorithm

HRAP: human resource allocation problem

IT: information technology

KSA: knowledge, skill and ability

MDM: multi-domain matrix

MOCell: multi-objective cellular genetic algorithm

MPx: emertxe project management

MS-RCPSP: multi-skill resource-constrained project scheduling problem

NMM: Nelder-Mead method

NSGA-II: non-dominated sorting genetic algorithm II

UML: unified modeling language

PAES: Pareto archived evolution strategy

PEM: project expert matrix

PERT: program/project evaluation and review technique

PSP: project scheduling problem

RCPSP: resource-constrained project scheduling problem

SMM: synergy-based multi-domain matrix

SNPM: stochastic network planning method

SPEA2: strength Pareto evolutionary algorithm 2

SPSP: software project scheduling problem

SSPSP: synergy-based software project scheduling problem

SynASF: synergy-based agile simulation framework

SynAPS: synergy-based agile project scheduling algorithm

TPM: traditional project management

xPM: extreme project management

ix

Acknowledgments

I am grateful to my advisor, Prof. Zsolt Tibor Kosztyán, Ph.D., and to my co-author,

István Szalkai, Ph.D. for their support and guidance. I also thank Prof. György

Dósa, Ph.D., and reviewers, Nikolett Deutsch, Ph.D. habil., and Csaba Hegedűs,

Ph.D. for their valuable advice. Special thanks to Péter Harta for making the data

he collected available to me for the practical example.

x

CHAPTER 1

Introduction

1.1 Motivation of the Thesis

Agile development methods have been widely used in software engineering over

the last decade (Lindsjørn et al., 2016). Contrary to the traditional planning ap-

proach, this methodology focuses on “individuals and interactions over processes

and tools”, “working software over comprehensive documentation”, “customer col-

laboration over contract negotiation”, and “responding to change over following a

plan” (Fowler et al., 2001, p. 2).1 Since it emphasizes teamwork more than tra-

ditional development methods do (Nerur et al., 2005), it is not surprising that the

tasks of allocating human resources and scheduling play a critical role in the suc-

cess of software development projects (see, e.g., Jalote and Vishal, 2003), and con-

sequently, in the competition in the information technology (IT) industry (Nan and

Harter, 2009). To reduce development costs and beat the market, companies have to

make reliable project plans; however, efficient allocation of workers is a particularly

difficult and challenging problem, particularly for medium- to large-scale projects

(see, e.g., Minku et al., 2013). For instance, in China alone, more than 40% of

software projects were unsuccessful due to incoherent planning of project tasks and

human resources (Ding and Jing, 2003).

In the literature on software development, the common issue of resource allocation

and task scheduling is referred to as the software project scheduling problem (SPSP)

1 Agile methodology is used as an umbrella term to describe a number of development methods
(Dybå and Dingsøyr, 2008; Dingsøyr et al., 2012).

1

2 1 INTRODUCTION

(see, e.g., Vega-Velázquez et al., 2018), which is related to the resource-constrained

project scheduling problem (RCPSP) (Alba and Chicano, 2007; Vega-Velázquez

et al., 2018) – or more specifically, to the multi-skill resource-constrained project

scheduling problem (MS-RCPSP) (Myszkowski et al., 2019; Tirkolaee et al., 2019).

The efficiency of solving this problem usually depends on several factors. On the

one hand, the development process should be as short as possible, thus allowing

the allocation of resources to other profitable processes as soon as possible. On

the other hand, the associated cost should be minimal. This multi-objective nature

makes planning even more complicated and, as a result of the increasing size of

software projects, makes manual scheduling almost impossible (Shen et al., 2018).

Research on this topic has intensified rapidly in recent years; however, due to the

above-mentioned reasons such research has mostly focused on the technical im-

provements of computer-aided planning (see, e.g., Chicano et al., 2011; Di Penta

et al., 2011; Luna et al., 2014). Even though human aspects are an important factor

of the success of software projects and should be a key research area within the field

of (agile) software project planning, existing studies have only explored the human

properties of the scheduling problem to a limited extent (Shen et al., 2018).

The goals of this dissertation are twofold: to proposing an agile approach that takes

into account the impact of project team members on each other’s performance dur-

ing scheduling and to examining the effect of these interactions on project cost. To

accomplish these goals, I extend the classical SPSP with synergies between em-

ployees and present a novel matrix-based approach that can handle employees’ in-

teractions and supports agile software development.2 Then, I analyze and compare

the solutions of the classical and the extended SPSP versions on projects from gen-

erated project networks to evaluate the impact of synergies on their costs.3

2 For simplicity, in this study, pairwise synergies between employees are applied to model their
interactions.

3 Project networks, resources and skills are generated by iMOPSE multi-skill resource-
constrained project scheduling problem generator (Myszkowski et al., 2019).

1.3 STRUCTURE OF THE THESIS 3

1.2 Research Questions

As a result of the dissertation, the following research questions (RQs) are answered:

RQ1: Is it possible to determine a scheduling problem for traditional and flexible
project planning environments that considers not only the skills of human
resources but also the synergies between them?

RQ2: Is it possible to develop a network- or matrix-based project scheduling model
that takes into account the flexibility of project plans, the skills of human re-
sources as well as the synergies between them?

RQ3: Is there a(n optimal) solution for scheduling a flexible software project plan
that considers the synergies between resources?

RQ4: Is it possible to develop a simulation framework to examine the impact of the
synergies between resources, the structures of synergy networks, the skills
of human resources as well as the size, flexibility, and constraints of the
project on the implementation of the project schedule?

1.3 Structure of the Thesis

The rest of the dissertation is organized as follows. Chapter 2 reviews the related

studies and defines the research assumptions based on them. Chapter 3 introduces

the extended SPSP, the hybrid genetic algorithm proposed to solve this problem as

well as the proposed simulation framework. Chapter 4 presents the results, answers

the research questions and defines the research theses. Chapter 5 introduces a prac-

tical example. Chapter 6 shows the threats to the validity. Chapter 7 concludes the

dissertation. Finally, Chapter 8 proposes future research directions.

CHAPTER 2

Related Studies

This chapter provides a brief overview of the basic definitions and contexts of pro-

ject and project management. Then it discusses the project planning problems and

techniques related to the topic of the dissertation, followed by a detailed review

of the main features and research directions of the SPSP. Finally, it presents some

of the most popular theories of high-functioning teamwork in terms of industrial

psychology and sociology, as well as the concept of synergy networks.

2.1 Project and Project Management

2.1.1 Basic Definitions

There are many definitions of the project in the project management literature, but

since the field is practitioner dominated, these definitions are not constructed as

rigorously as in established scientific fields (Chiocchio et al., 2015). Most of the

definitions emphasize the uniqueness (see, e.g., Görög, 1999, 2007; Wysocki, 2011,

2019), complexity (see e.g., Cleland and King, 1983; Archibald, 2003), and tempor-

ary nature (see, e.g., Shenhar, 2001; Shenhar and Dvir, 2007; Vidal et al., 2011) of

the project, while others focusing on its strategic role (see, e.g., Cleland, 2007; Ley-

bourne, 2007; Cooke-Davies et al., 2009), constraints (see, e.g., Graham et al., 1979;

Cleland and King, 1983), its significant human and non-human resource needs (see,

e.g., Cleland and Kerzner, 1985; Jamieson and Morris, 2007), or more specifically,

the teamwork in which the project is implemented (see, e.g., Schwab and Miner,

2008).

4

2.1 PROJECT AND PROJECT MANAGEMENT 5

The most important two definitions regarding the topic of the dissertation are the

following.

- “A complex effort to achieve a specific objective within a schedule and budget

target, which typically cuts across organizational lines, is unique and is usually

not repetitive within the organization” (Cleland and King, 1983, p. 70).

- “A project is a sequence of unique, complex, and connected activities that have

one goal or purpose and that must be completed by a specific time, within budget,

and according to specification.” (Wysocki, 2019, p. 4).

As the present dissertation is related to project planning, more precisely to project

scheduling and resource allocation, I will focus on the constraints rather than the

uniqueness of projects when providing definitions. Although the uniqueness of

projects is important from an organizational point of view, the planning methods

presented in the dissertation can be applied regardless of the uniqueness of projects.

For this reason, I will hereinafter use the definition of Wysocki (2019, p. 4) of

what a project is, however, I disregard the uniqueness of activities emphasized in

the original definition. The key concepts of the areas of scheduling and resource

allocation can be defined as follows.

- The activity (or task) is “a distinct, scheduled portion of work performed during

the course of a project” (PMI, 2012, p. 6).

- The event is “a point in time when an activity starts or ends” (Mubarak, 2019, p.

24).

- The milestone is “a significant point or event in a portfolio, program, or project”

(PMI, 2012, p. 6).

- A finish-to-start precedence relationship between activities means that “a suc-

cessor activity cannot start until a predecessor activity has finished. For example,

installing the operating system on a PC (successor) cannot start until the PC hard-

ware is assembled (predecessor)” (PMI, 2017, p. 190).

- A resource is a skilled employee “(specific disciplines either individually or in

crews or teams), equipment, services, supplies, commodities, materials, budgets,

or funds required to accomplish the defined work” (PMI, 2011, p. 2).

6 2 RELATED STUDIES

- The project team “consists of individuals with assigned roles and responsibilities

who work collectively to achieve a shared project goal” (PMI, 2017, p. 309).

Similarly to the project term, there is no consensus definition of project management

either. Two widely used, commonly formulated definitions are derived from PMI

(2017) and Phillips (2018).

- Based on PMI (2017, p. 10), “project management is the application of know-

ledge, skills, tools, and techniques to project activities to meet the project re-

quirements.” Moreover, “project management is accomplished through the ap-

propriate application and integration of the project management processes iden-

tified for the project” and it “enables organizations to execute projects effectively

and efficiently.”

- According to Phillips (2018, p. 13), “project management is the supervision and

control of the work required to complete the project vision. The project team

carries out the work needed to complete the project, while the project manager

schedules, monitors, and controls the various project tasks. Project management

requires that you apply your knowledge, skills, tools, and techniques, and do

whatever it takes, generally speaking, to achieve the project objectives.”

In line with the above-mentioned definitions, the term project management is here-

inafter used to mean “the application of knowledge, skills, tools, and techniques to

project activities to meet the project requirements” PMI (2017, p. 10).

2.1.2 Project Life Cycle

From a project management perspective, the life cycle of a project consists of five

phases, each of which involves specific managerial tasks (see, e.g., Lewis James,

1997; Klein, 2012; Schwindt et al., 2015). These consecutive phases are illustrated

in Fig. 1.

2.1 PROJECT AND PROJECT MANAGEMENT 7

FIGURE 1. Project life cycle
(Source: Schwindt et al., 2015, p. 27)

In the first phase, so-called project conception, by using feasibility studies and eco-

nomic and risk analysis, it is decided whether or not a project should be implemen-

ted. It is followed by the project definition phase, that defines the objectives and

organizational form of the project as well as the milestone plan.4 In the project

planning phase, the project is decomposed into activities, then the precedence rela-

tions of these activities are specified.5 Furthermore, for each task, the duration, the

required resources, as well as the cost associated with the execution of that task are

estimated. Finally, a project schedule is determined by some planning approach. At

the end of the planning phase, the project is ready for implementation and the project

execution phase begins (Schwindt et al., 2015). During the execution phase, pro-

ject management continuously monitors and evaluates whether or not the project is

performed according to the established baseline schedule. If significant deviations

are detected, the plan has to be revised or an execution strategy – defined in the

planning phase – is used to bring the project back to course.6 Finally, the project is

evaluated and documented in the termination phase (Schwindt et al., 2015).

4 The milestone plan is a logical plan that presents the interconnections between milestones (An-
dersen, 2006).

5 This step is often called logical planning in the literature (see, e.g., Pecora and Cesta 2002;
Kosztyán and Kiss 2010).

6 Quality and configuration management are also performed in this phase (Turner 2009; PMI,
2017).

8 2 RELATED STUDIES

2.1.3 Triple Constraint of Project Management

As highlighted by the studies presented in Section 2.1.1 (Cleland and King, 1983;

Archibald, 2003; Andersen et al., 2009), the primary constraints of projects are

scope, time, and budget (PMI, 2017). The model referred to as the triple constraint,

project triangle, or iron triangle in the literature, is focused on the interdependence

between these three constraints.7 To explain it more plainly if a change is made to

the time taken to complete the project, one way or another it will have an impact

on either the cost or scope of the project or both. Similarly, changing the scope

of the project will impact the cost or the time is taken or both and so on (Dwyer

et al., 2004). On the one hand, this model lays the foundation for the formation of

project goals. On the other, the assessment of the success and failure of the project

implementation after completion is fundamentally determined by the elements of

the triangle (Pinto and Prescott, 1988; Atkinson, 1999). The triple constraint is

illustrated in Fig. 2.

FIGURE 2. Triple constraint of project management
(Source: Hinde, 2018, p. 333)

2.1.4 Types of Projects

Grouping projects is essential to determine the appropriate methods for planning

and managing them (Görög and Ternyik, 2001). According to Görög (2007), pro-

jects can be grouped based on their complexity, the nature of participation, and the

initiating organization, as well as their topic or content (see Fig. 3).

7 The origins of the triple constraint are unclear but based on Atkinson (1999), it has been used
since at least the 1950s.

2.1 PROJECT AND PROJECT MANAGEMENT 9

FIGURE 3. Typology of projects
(Source: based on Görög, 2003, p. 36)

Since the dissertation is related to IT projects, the characteristics of this project type

is discussed in detail. According to (Bannerman and Thorogood, 2012, p. 1), “IT

projects are discrete and unique activities that serve as vehicles of multidimensional

IT-based change.” As Sheard et al. (2015) points out, the factor that most charac-

terizes these projects is complexity, however, this complexity is a characteristic of

more than just a technical system being developed. Following Rodriguez-Repiso

et al. (2007) and Iriarte and Bayona (2020), IT projects are typically created in a

complex environment by the numerous and continuous interaction of people whose

work are highly interdependent. As a consequence, these projects are often canceled

or reduced in scope because of overruns in cost and/or time or failure to produce

anticipated benefits (Mehler, 1991; Lederer and Prasad, 1993; Kumar, 2002). Based

on Rodriguez-Repiso et al. (2007, p. 2), the practical management of IT projects

beyond the theories for success finds significant difficulties as follows:

- “IT projects are often poorly defined, codes of practice are frequently ignored,

and in some cases, not many lessons are learned from past experience.”

10 2 RELATED STUDIES

- “Market pressures demand delivery in the shortest time frame even if it may

result in a lower quality product.”

- “The rapid pace of technological progress in IT hinders the expertise in a partic-

ular technique and creates a culture where the use of tools not completely tested

is acceptable and commonplace.”

- “The tendency to write new software code to perform well-established functions

decreases reliability.”

- “IT projects contain a greater degree of a novelty than other engineering pro-

jects. In particular, IT projects related to product innovation development are an

extremely complex, risky, and expensive endeavor.”

- “IT projects involve numerous iterations and continuous interaction between

everyone involved in design and implementation. Their work is highly inter-

dependent which necessitates efficient communication within the project team.”

2.1.5 Project Management Approaches

The term project management approach is mainly used as a set of principles and

guidelines that define how specific project is managed (Introna and Whitley, 1997;

Iivari et al., 2000). Principles developed in the 1950s require that methods and pro-

cedures be applied in a uniform manner, regardless of the type of project (Špundak,

2014). The basic idea behind this, so-called traditional project management (TPM)

approach is that projects are relatively simple, predictable, and linear with clearly

defined boundaries which all makes it easy to plan in detail and follow that plan

without much changes (see, e.g., Wysocki, 2011, 2019; Boehm et al., 2000; Cicmil

et al., 2006; Špundak, 2014). In recent decades, the objections regarding the rigid-

ity of the TPM, together with the growing requests for continuous innovations that

have impacted all industries and with the cost reduction trends, have led to the emer-

gence of new project management approaches (Špundak, 2014). In line with Wyso-

cki (2019), these new, so-called complex project management approaches (agile,

extreme and emertxe) can be compared with TPM according to the clarity of their

objectives and solutions (see Fig. 4).

2.1 PROJECT AND PROJECT MANAGEMENT 11

FIGURE 4. Project management approaches in terms of goal and solution
(Source: Wysocki, 2019, p. 8)

As Fig. 4 shows, TPM is suitable for managing well-structured projects with

clear requirements and project scope. This approach accepts that actions affecting

the project are foreseeable and that tools, techniques and actions are well-defined

(Toljaga-Nikolic et al., 2017). When neither the project goal nor solution are known

or not clearly defined, then the extreme project management (xPM) approach should

be applied. Emertxe (MPx) is the inverse xPM approach, mainly used when a new

technology is developed but does not have a known application yet (Toljaga-Nikolic

et al., 2017). When the goal is clear but the solution is missing some or most parts,

one can apply the agile project management (APM) approach (Wysocki, 2019).

While xPM and MPx are related to research and development projects, the fourth

approach, agile project management (APM) is mainly applied in software develop-

ment. Given the topic of the dissertation, in the following, this approach is presented

in detail and compared with TPM.

Contrary to the traditional approach, APM methods “are lightweight processes that

employ short iterative cycles, actively involve users to establish, prioritize, and

verify requirements, and rely on a team’s tacit knowledge as opposed to document-

ation. A truly agile method must be iterative (takes several cycles to complete),

incremental (not deliver the entire product at once), self-organizing (teams determ-

ine the best way to handle work), and emergent (processes, principles, and work

structures are recognized during the project rather than predetermined)” (Boehm

and Turner, 2005, p. 3). The key differences between TPM and APM are summar-

ized in Table 1.

12 2 RELATED STUDIES

TABLE 1. Key differences between TPM and APM
(Source: Dybå and Dingsøyr, 2008, p. 4)

Area of interest TPM APM

Basic assumptions The product can be fully described at A high quality product is worked out by
the planning phase of the project. small specialised teams on a continuous

improvement basis.
Management style Autocratic, Prescriptive Affiliate, Democratic
Knowledge man. Explicit Tacit
Communication Formal Informal
Organ. structure Bureaucratic, Highly formalised Flexible, Cooperative
Quality control Planned in time in details. On-going control of the achieved sub-

results toward the client’s expectations.

Based on Dalcher (2009), in the TPM approach, the scope of the project is fixed,

which, if necessary, must be achieved even at the cost of exceeding the planned

costs and duration. In contrast, in the case of the APM, the available time and

budget appear as a constraint, within which the scope must be achieved as much as

possible (see Fig. 5).

FIGURE 5. Comparison of TPM and APM
(Source: Dalcher, 2009)

According to an international survey conducted by Wysocki (2011), only less than

20% of the projects belong to the traditional (like infrastructure) projects, and about

70% of the projects are handled as agile ones.8 One of the main reasons for the

popularity of the APM is that projects managed in this way are typically more suc-

cessful than projects managed within traditional frameworks. Based on the results

of Standish Group’s recent survey, IT projects managed in the agile form are about
8 The remaining about 10% are handled as extreme or emertxe project (Wysocki, 2011).

2.2 PROJECT PLANNING PROBLEMS AND TECHNIQUES 13

two times more successful than projects handled with traditional models and about

a third time less likely to fail (SGI, 2019). The detailed results of the survey is

presented in Table 2.

TABLE 2. Project success rates in traditional and agile IT projects
(Source: SGI, 2019)

Method Successful Challenged Failed

Waterfall9 11% 60% 29%
Agile 39% 52% 9%

Successful: project that met all three of the triple constraints: schedule, cost, and scope.
Challenged: project that met two out of three constraints.
Failed: project that is canceled before it is completed, or completed but not used.

2.2 Project Planning Problems and Techniques

Project planning has been defined as “the process of choosing the one method and

order of work to be adopted for a project from all the various ways and sequences

in which it could be done” (Antill and Woodhead 1990, p. 8, as cited in Callahan

et al. 1992, p. 2, Mubarak 2019, p. 4). According to PMI (2017, p. 554), the

planning process group refers to “those processes required to establish the scope of

the project, refine the objectives, and define the course of action required to attain

the objectives that the project was undertaken to achieve”. It serves as a founda-

tion for several related functions, such as cost estimating, project control, quality

control, safety management, scheduling or the allocation of human and non-human

resources (Mubarak, 2019). Since both the project scheduling problem (PSP) and

the human resource allocation problem (HRAP) are related to the SPSP, we briefly

overview them before reviewing the literature of the SPSP in detail.

2.2.1 Project Scheduling Problem

Project scheduling is mainly related to selecting execution modes and fixing execu-

tion time intervals for the activities of a project (Schwindt et al., 2015). According

to PMI (2011, p. 2), “it ensures the development of effective schedule models

9 The waterfall model (Benington, 1983) is a traditional planning approach, widely used in soft-
ware development.

14 2 RELATED STUDIES

through the application of skills, tools, techniques, and intuition acquired through

knowledge, formal and informal training, and experience. A schedule model ration-

ally organizes and integrates various project components (e.g., activities, resources,

and logical relationships) to optimize the information available to the project man-

agement team and facilitate the likelihood of a successful project completion within

the approved schedule baseline.”

The first methods for solving the project scheduling problem (PSP) date back to the

1950s, when the widely known network-based models like the critical path method

(CPM) or the project/program evaluation and review technique (PERT) were for-

mulated and developed (Ratajczak-Ropel and Skakovski, 2018). These techniques

allowed projects to be portrayed by networks in which activities are represented by

arcs, events are represented by nodes, and the interrelations between activities are

defined by the network structure (Icmeli et al., 1993). Their objective is to com-

plete the project in the shortest time allowed by the priority relationships. CPM

and PERT are referred to as complementary tools in the literature, because “CPM

employs one time estimation and one cost estimation for each activity; PERT may

utilize three time estimates (optimistic, expected, and pessimistic) and no costs for

each activity” (Brennan, 1968, p. 1). These methods consider only the duration

and precedence conditions of the activities and ignore the resource requirements

(Mateo, 2016), which results in a favorable, so-called polynomial-time computa-

tion need on the one hand, and an oversimplified scheduling problem on the other

(Özdamar and Ulusoy, 1995).10

In many real-life situations, there are delays in the implementation of certain activ-

ities when resources are not available in sufficient quantities during the time in-

terval when they are scheduled to take place (Icmeli et al., 1993). The problem

that complements the simple PSP with the scarcity of available resources is called

10 An algorithm is said to be of polynomial time if its running time is upper bounded by a polyno-
mial expression in the size of the input for the algorithm (see, e.g., Li et al., 2015).

2.2 PROJECT PLANNING PROBLEMS AND TECHNIQUES 15

the resource-constraint project scheduling problem (RCPSP) (Pritsker et al., 1969)

and it has an NP-hard complexity.11 Informally, the RCPSP considers resources of

limited availability and activities of known duration and resource needs, linked by

precedence relations. The problem consists of finding a schedule with a minimum

duration by assigning a start time for each activity, while respecting priority condi-

tions and resource availability (Artigues et al., 2008). Since the 1960s, a number

of heuristics and many exact solution techniques have emerged to solve the RCPSP

(Icmeli et al., 1993), and today a significant portion of scheduling problems are

based on the RCPSP (Özdamar and Ulusoy, 1995).

2.2.2 Human Resource Allocation Problem

In the human resource allocation problem (HRAP), different project activities re-

quire employees with different skills, and the skill proficiency of employees signi-

ficantly influences the efficiency of project execution (see, e.g., Chen and Zhang

2013). According to Kumar and Ganesh (1998) and Chen and Zhang (2013),

techniques like PERT and CPM lack the consideration of resource allocation, and

scheduling models like the basic RCPSP do not consider the allocation of employ-

ees with various skills. Consequently, tools based on these traditional planning tech-

niques generally consider the scheduling of activities and the human resource alloc-

ation as two separate tasks. Thus, the HRAP must be solved manually by project

managers (Kumar and Ganesh, 1998), which results in inefficient resource alloca-

tion and poor management performance (Chen and Zhang, 2013). As Yoshimura

et al. (2006, p. 2) argues, “human resource allocation decisions are usually made

according to the experience and intuition of project managers. However, as the

contents of the projects become more complex and the required abilities to carry

them out more diversified, there is an increasing need for logical support systems

11 NP-hard problem means that there is no known algorithm which can solve the problem in
polynomial time (see, e.g., Islam et al., 2019).

16 2 RELATED STUDIES

to assist decision makers when seeking the best possible deployment of the human

resources.” In the past twenty years, a number of methods have been developed

to solve this complex, NP-hard problem (see, e.g., Cheng and Chu 2012; Almeida

et al. 2016; Young et al. 2017; Wang and Zheng 2018). Among these, matrix-based

planning methods have become increasingly popular.

2.2.3 Matrix-Based Flexible Planning

Unlike traditional project planning techniques, matrix-based methods provide a

flexible planning environment and support the APM approach. Most of these meth-

ods are based on the so-called dependency/design structure matrix (DSM) developed

by Steward (1981). The DSM is a binary square (n × n) matrix that represents the

strict successors of the project activities, and contrary to the majority of the network

planning techniques, the circles in the dependency structure can be identified and

handled by this method.12 To augment the DSM method, Danilovic and Browning

(2007) formalized the domain mapping matrix (DMM), which compares two DSMs

from two different project domains. Contrary to a DSM, a DMM is a rectangular

(m×n) matrix, where m is the size of the first DSM and n is the size of the second.

Another matrix proposed by Gorbea et al. (2008), the so-called the multi-domain

matrix (MDM), is a fusion of DSM and DMM that allows for the integration of

numerous different domains in one model (Deubzer et al., 2008) (see Fig. 6).

Although the original, binary DSM can only be used for logical planning, its im-

proved forms can also be used for solving the PSP (Chen et al., 2003; Maheswari

and Varghese, 2005; Gunawan and Ahsan, 2010; Shi and Blomquist, 2012; Mo-

hammadi et al., 2014), as well as the RCPSP (Cho and Eppinger, 2005; Kosztyán,

12 Note that even though the dissertation proposes a matrix-based method for software project
planning, in its current form, the proposed method only handles acyclic project structures. Thus, we
will herein-after only focus on projects with such a structure.

2.2 PROJECT PLANNING PROBLEMS AND TECHNIQUES 17

FIGURE 6. Multi-domain matrix (MDM)
(Source: own figure)

2015, 2020; Kosztyán and Szalkai, 2020), while providing a more flexible envir-

onment for project modeling compared to the original method. For instance, while

the stochastic network planning method (SNPM) (Kosztyán et al., 2008) is able

to model uncertain relations between activities, the project expert matrix (PEM)

(Kosztyán et al., 2010) can also distinguish mandatory and supplementary activities

based on the probability of their realization. The Project Domain Matrix (PDM) ex-

tends the PEM – in the model, it is called the logical domain – with cost, time and

resource domains (Kosztyán, 2015; Kosztyán et al., 2020).13 Furthermore, to trans-

form the RCPSP into a more practical – and consequently, more complex – problem,

Myszkowski et al. (2015a) complemented it with the skills domain and defined the

multi-skill resource-constraint project scheduling problem (MS-RCPSP). Accord-

ing to Myszkowski et al. (2015a), in the MS-RCPSP, resources dispose of some

given pool of skills, while every activity requires some skills in a given level to

13 DSM-based methods can also be used in other areas of project planning, such as project monit-
oring and coordination (see, e.g., Kosztyán and Kurbucz, 2015; Kurbucz, 2016).

18 2 RELATED STUDIES

be performed. It means that not every resource is capable of performing every

activity. In addition, the performance cost of the project schedule was added as an

another criterion, transforming the classical single-objective (time) RCPSP into a

multi-objective (time-cost trade-off) MS-RCPSP.

2.3 Software Project Scheduling Problem

As it is presented in Section 2.2, a number of methods have been proposed to solve

the RCPSP (see, e.g., Hartmann and Briskorn, 2010; Węglarz et al., 2011), how-

ever, the common problem of scheduling and human resource allocation is a much

newer and more complex area (see, e.g., Fernandez-Viagas and Framinan 2014).14

In the software development literature, this problem is referred to as the software

project scheduling problem (SPSP) (Alba and Chicano, 2007) and has been extens-

ively studied (see, e.g., Xiao et al., 2013; Luna et al., 2014; Cheng et al., 2019; Guo

et al., 2019; Rezende et al., 2019; da Silva et al., 2020). Alba and Chicano (2007)

defined the differences between the SPSP and the RCPSP as follows. Firstly, in

the SPSP there is a project cost and a cost associated with the workers, which must

be minimized (in addition to the project duration). Moreover, while in the RCPSP

there are several types of resources, the SPSP has only one (the employee) with sev-

eral possible skills. Finally, while each activity in the RCPSP requires predefined

quantities of each resource, skills in the SPSP are not quantifiable entities. Fol-

lowing Alba and Chicano (2007), these differences make the SPSP more realistic

than the RCPSP, since it includes the concept of an employee with a salary and per-

sonal skills, also capable of performing several tasks during a regular working day.

Note that the SPSP shows more similarities to the MS-RCPSP than to the RCPSP,

however, there are also some differences between the first two. For instance, un-

like in the MS-RCPSP, resources in the SPSP can perform multiple tasks over time,

14 For a detailed review of the RCPSP literature, see, e.g., Hartmann and Briskorn (2010); Wu
et al. (2014) and Fahmy (2016).

2.3 SOFTWARE PROJECT SCHEDULING PROBLEM 19

and it also takes into account the dedication of employees to activities (see, e.g.,

Myszkowski et al., 2015b, 2017; Laszczyk and Myszkowski, 2019).

To present the basic concept of the SPSP and to review its literature, this section

mainly relies on Vega-Velázquez et al. (2018), a survey dedicated to this problem.15

Following the authors’ logic, first, a reference model is defined, then 37 papers are

compared with this model based on their structure, objective and optimization.16

2.3.1 Reference Model

Similarly to this study, most of the papers in the literature are based on the model

proposed by Alba and Chicano (2007), even though their article did not contain the

term SPSP.17 Vega-Velázquez et al. (2018) illustrate the model of Alba and Chicano

(2007) with an UML (Unified Modeling Language) class diagram, representing that

a project schedule is composed of a set of activities and employees, and employees

are associated with activities (see Fig. 7).18

FIGURE 7. UML class diagram of the SPSP
(Source: Vega-Velázquez et al., 2018, p. 11)

15 This is justified not only by the detail of Vega-Velázquez et al. (2018), but also by the fact that
the new approach presented in this study can thus be more easily compared with the literature.

16 Note that the formal description of the SPSP (and its extension) is presented in Chapter 3.
17 Alba and Chicano (2007) referred to the problem as the PSP.
18 The UML “is a standardized general-purpose modeling language in the field of software engin-

eering” (Suri and Jajoria, 2013, p. 4).

20 2 RELATED STUDIES

As Fig. 7 shows, in the SPSP, employees are characterized by their skills, their

monthly salary, and their maximum dedication time to a project. Activities are the

units of work that make up a project. They are characterized by a set of required

skills and an effort which is expressed in person-months. An activity can be as-

signed to one or more employees, and each employee has a level of dedication

associated with that activity. The duration of the activities can be calculated based

on the efforts associated with those activities and the dedication of employees. In

addition, activities can be interdependent. When these dependencies exist, an activ-

ity can only begin when its predecessors have completed. Once the duration of the

activity has been determined, its start and end times can be calculated. The duration

of the project is the sum of the duration of the longest consecutive activities.19 The

main constraints of the model are the following:

C1: Each activity must be performed by at least one human resource.

C2: The set of skills that an activity requires must be a subset of the union of skills
of the employees who perform this activity.

C3: There must not be any human resource who exceeds his or her maximum ded-
ication (allocation) to the project.

2.3.2 Structure

While almost half of the reviewed research papers reuse the model of Alba and

Chicano (2007) without any changes, there are some studies that use only the first

constraint (C1) of the benchmark model. Other studies present a slightly modified

version of Alba and Chicano’s (2007). Table 3 presents the structural similarities

and differences between the models of the examined papers and the reference model

of Alba and Chicano (2007).

19 This is called a critical path in the project management literature (see, e.g., Devaux, 1999).

2.3 SOFTWARE PROJECT SCHEDULING PROBLEM 21

TABLE 3. Structural differences between planning models

(Source: Vega-Velázquez et al., 2018, pp. 13-15, own update is denoted by ‡)

Paper
Task attributes Employee attributes

Constraints CommentsEffort Req. Skills Salary Max.
Skills dedic.

Alreffaee
and Alaba-
jee (2020)‡

EQ EQ EQ EQ EQ C1, C2, C3 Same as reference model.

de An-
drade et al.
(2019)‡

EQ EQ EQ EQ EQ C1, C2, C3 Same as reference model.

Chicano
et al. (2011)

EQ EQ EQ EQ EQ C1, C2, C3 Same as reference model.

Chicano
et al. (2012)

EQ NR NR EQ NR - All of the tasks must be
performed by at least one
employee who has a pro-
ductivity > 0 in the corres-
ponding task.

- Employees have a pro-
ductivity attribute associ-
ated to tasks.

(this is the only constraint)
Luna et al.
(2011)

EQ EQ EQ EQ EQ C1, C2, C3 Same as reference model.

Luna et al.
(2014)

EQ EQ EQ EQ EQ C1, C2, C3 Same as reference model.

Chang et al.
(2001)

EQ EQ EQ EQ DIF* - A task must not be inter-
rupted during its execution.

* It is called overtime limit
overloading limit.

- Employees must work on
a task from its beginning to
its end (that is, without in-
terruption).

Chang et al.
(2008)

EQ EQ DIF* DIF** DIF*** - Tasks must not finish after
the established deadline.

- There is a limit on the
resources that can be as-
signed to a task.

* Employees skills are
rated in a scale between 0
and 5.
** Employees are assigned
a monthly base salary plus
an additional payment for
overwork.
*** Maximum dedication
corresponds to the amount
of hours an employee can
work with respect to an
established maximum, ex-
pressed as a percentage.
- Employees are also char-
acterized by their availabil-
ity in the project.
- Tasks have an established
deadline.

García-
Nájera and
del Carmen
Gómez-
Fuentes
(2014)

EQ DIF* DIF** EQ NR C1 is reused.

- Additional constraint:
Each task must be assigned
to at least one employee
that possesses the skill
level required by the task
(Similar to C2).

* Tasks are characterized
by a required skill level.

** Employees possess a
skill level: beginner, junior,
senior and expert.

Reference model: Alba and Chicano (2007). Continued on next page...
- EQ: The attribute is the same (equal) as in the reference model.
- DIF: There are differences with respect to the reference model.
- NR: The attribute was not reported or not considered in the model.

22 2 RELATED STUDIES

Paper
Task attributes Employee attributes

Constraints CommentsEffort Req. Skills Salary Max.
Skills dedic.

García-
Nájera and
del Carmen
Gómez-
Fuentes
(2014)

EQ DIF* DIF** EQ NR - C1 is reused.

- Additional constraint:
Each task must be assigned
to at least one employee
that possesses the skill
level required by the task
(Similar to C2).

* Tasks are characterized
by a required skill level.

** Employees possess a
skill level: beginner, junior,
senior and expert.

Minku et al.
(2012)

EQ EQ EQ EQ EQ* - Only C1. * Maximum dedication of
the employees is constant
(equal to 1).

Minku et al.
(2013)

EQ EQ EQ EQ EQ* - Only C1. * Maximum dedication of
the employees is constant
(equal to 1).

Ngo-The
and Ruhe
(2008)

EQ NR NR NR NR - Additional constraint: All
the tasks that are planned
for a particular release must
be finished before its due
date.

- Employees are character-
ized by a productivity per
type of task.

- Additional constraint: A
feature must not require a
larger amount of resources
than those that are avail-
able.

Duggan
et al. (2004)

NR NR DIF* NR NR NR * Employees have a skill
level for different types of
tasks. Skill levels are the
following: novice, average,
good, very good and expert.

Xiao et al.
(2013)

EQ EQ EQ EQ EQ C1, C2, C3 Same as reference model.

Gueorguiev
et al. (2009)

NR DIF* DIF** NR NR NR * Each task requires a
particular skill to be per-
formed.
** Each employee has a
single skill.

Jin and Yao
(2014)

EQ EQ EQ EQ EQ C1, C2, C3 Same as reference model.

Suri and Ja-
joria (2013)

NR EQ EQ EQ NR NR

Antoniol
et al. (2004)

EQ NR NR NR NR NR

Rodríguez
et al. (2011)

NR NR DIF* NR NR NR * Employees are of two
types: novice or experi-
enced.
- Additional variables are
considered including pro-
ject size and scheduled
time.

Reference model: Alba and Chicano (2007). Continued on next page...
- EQ: The attribute is the same (equal) as in the reference model.
- DIF: There are differences with respect to the reference model.
- NR: The attribute was not reported or not considered in the model.

2.3 SOFTWARE PROJECT SCHEDULING PROBLEM 23

Paper
Task attributes Employee attributes

Constraints CommentsEffort Req. Skills Salary Max.
Skills dedic.

Di Penta
et al. (2011)

EQ DIF* EQ NR NR - Additional constraint:
Members of the develop-
ment teams must be in
disjoint sets.

* Each work package is
organized around a single
skill.

- Additional constraint:
Members of a develop-
ment team must possess a
common set of skills.
- Additional constraint:
Each work package must
be associated with a
team that covers the skill
required by the work
package.

Gonsalves
and Itoh
(2010)

DIF* EQ DIF** DIF*** NR - Additional constraint: No
employee must be assigned
simultaneously to more
than one task at any given
moment.

* Tasks are associated with
the original processing
time (initial).

** Employees skills are
rated in a scale between 0
and 5.

*** The cost of the employ-
ees is a daily cost.

Hanne and
Nickel
(2005)

NR NR DIF* NR NR - Additional constraint:
The author of a coding arti-
fact cannot be the inspector
or tester of said artifact.

* The skills of the employ-
ees are of coding inspection
and testing and are rated in
the interval [0-1].

- Additional constraint: A
task with a higher priority
must be scheduled before a
task with a lower priority, if
possible.

- Tasks are characterized by
size, complexity and do-
main.

Dupuy et al.
(2013)

EQ EQ EQ EQ EQ C1, C2, C3 Same as reference model.

Shen et al.
(2015)

DIF* EQ EQ EQ DIF** C1, C2, C3

- Additional soft constraint:
There is a maximum num-
ber of employees assigned
to each task.

* The initial effort of a task
can change.
** The availability of an
employee can change dur-
ing the project.
- New tasks can appear dur-
ing the project.

Wu et al.
(2016)

EQ EQ EQ EQ EQ C1, C2, C3 Same as reference model.

Xiao et al.
(2015)

EQ EQ EQ EQ EQ C1, C2, C3 Same as reference model.

Crawford
et al. (2014)

EQ EQ EQ EQ EQ C1, C2, C3 Same as reference model.

Reference model: Alba and Chicano (2007). Continued on next page...
- EQ: The attribute is the same (equal) as in the reference model.
- DIF: There are differences with respect to the reference model.
- NR: The attribute was not reported or not considered in the model.

24 2 RELATED STUDIES

Paper
Task attributes Employee attributes

Constraints CommentsEffort Req. Skills Salary Max.
Skills dedic.

Wena and
Lin (2008)

NR NR NR EQ NR - Additional constraint:
The duration of a pro-
ject cannot exceed an
established maximum
duration.

- Additional input variables
are considered, including
the maximum duration and
maximum cost for the pro-
ject.

- Additional constraint:
The total cost of the pro-
ject cannot exceed the
established maximum cost.

Crawford
et al.
(2016a)

EQ EQ EQ EQ EQ C1, C2, C3 Same as reference model.

Crawford
et al.
(2016b)

EQ EQ EQ EQ EQ C1, C2, C3 Same as reference model.

Shen et al.
(2018)

DIF* EQ EQ EQ DIF** C1, C2, C3 * The initial effort of a task
can change.

- Additional soft constraint:
There is a maximum num-
ber of employees assigned
to each task.

** The availability of an
employee can change dur-
ing the project.

Reference model: Alba and Chicano (2007).
- EQ: The attribute is the same (equal) as in the reference model.
- DIF: There are differences with respect to the reference model.
- NR: The attribute was not reported or not considered in the model.

2.3.3 Objective

The SPSP is considered as an NP-hard problem (see, e.g., Xiao et al., 2013), and

in general, its two major goals are reducing both the cost and duration of the pro-

ject; however, these goals are in conflict with each other (see, e.g., Alba and Chi-

cano, 2007; Myszkowski et al., 2019). Similarly to other problems with multiple

objectives, the general SPSP has no single solution. Instead, its solutions form a

so-called Pareto-optimal set (Deb, 2001), where every point is optimal in the sense

that neither the duration nor the cost objectives can be improved without worsen-

ing the other objective (see, e.g., Gonsalves and Itoh, 2010; Di Penta et al., 2011;

García-Nájera and del Carmen Gómez-Fuentes, 2014; Luna et al., 2014). Alternat-

ively, the SPSP can be treated as a single objective problem by using a composite

objective function (see, e.g., Alba and Chicano, 2007; Suri and Jajoria, 2013; Xiao

et al., 2013; Jin and Yao, 2014), and in some cases, other objectives may appear,

2.3 SOFTWARE PROJECT SCHEDULING PROBLEM 25

such as minimizing overload (Chang et al., 2001; García-Nájera and del Carmen

Gómez-Fuentes, 2014) or maximizing quality (Duggan et al., 2004; Hanne and

Nickel, 2005). The optimization objectives of the reviewed papers are compared

in Table 4.

TABLE 4. Differences in optimization objectives

(Source: Vega-Velázquez et al., 2018, pp. 20-21, own update is denoted by ‡)

Paper Objectives Type of optimizationDuration Cost Overload Quality Fragment. Other

Alba and Chicano (2007) X X S
Alreffaee and Alabajee
(2020)‡

X X S

de Andrade et al. (2019)‡ X X M
Chicano et al. (2011) X X M
Chicano et al. (2012) X X M
Luna et al. (2011) X X M
Luna et al. (2014) X X M
Chang et al. (2001) X X X S
Chang et al. (2008) X X S
García-Nájera and del
Carmen Gómez-Fuentes
(2014)

X X X M

Minku et al. (2012) X X S
Minku et al. (2013) X X S
Ngo-The and Ruhe (2008) X S
Duggan et al. (2004) X X M
Xiao et al. (2013) X X S
Gueorguiev et al. (2009) X X M
Jin and Yao (2014) X X S
Suri and Jajoria (2013) X X S
Di Penta et al. (2011) X X M
Antoniol et al. (2004) X S
Rodríguez et al. (2011) X X X M
Gonsalves and Itoh (2010) X X M
Dupuy et al. (2013) X X S
Hanne and Nickel (2005) X X X M
Wena and Lin (2008) X X M
Crawford et al. (2014) X X S
Crawford et al. (2016a) X X S
Crawford et al. (2016b) X X S
Wu et al. (2016) X X M
Xiao et al. (2015) X X M
Shen et al. (2015) X X X M
Shen et al. (2018) X X X M

- S: Single objective problem.
- M: Multi-objective problem.

26 2 RELATED STUDIES

2.3.4 Optimization

To solve the SPSP, Coello et al. (2006) and Myszkowski et al. (2019) propose sev-

eral meta-heuristics, while Chicano et al. (2011) and Luna et al. (2014) compare

accuracy and scalability of these algorithms. Chicano et al. (2011) and Luna et al.

(2014) observe that the algorithm called Pareto archived evolution strategy (PAES)

(Knowles and Corne, 2000) has the best scalability and obtains the best approximate

Pareto sets, while the most widely used non-dominated sorting genetic algorithm II

(NSGA-II) (Deb et al., 2002) and strength Pareto evolutionary algorithm 2 (SPEA2)

(Zitzler et al., 2001) are examples of the least accurate solvers in general. Never-

theless, PAES is outperformed by NSGA-II, SPEA2 and several recent algorithms,

such as the multi-objective cellular genetic algorithm (MOCell) (Nebro et al., 2007)

in high-cost short-duration project scheduling (Luna et al., 2014). Table 5 presents

a comparison of the reviewed papers according to the optimization algorithm they

used to solve the SPSP.

TABLE 5. Optimization algorithms

(Source: Vega-Velázquez et al., 2018, pp. 26-27, own update is denoted by ‡)

Paper Evolutionary algorithms Swarm intelligence Other
algorithmsGA NSGA-II SPEA-II PAES Other MOEAs PSO ACO

Alba and Chicano
(2007)

X

Alreffaee and Alaba-
jee (2020)‡

WOA

de Andrade et al.
(2019)‡

X X GE-HH

NCRO
Chicano et al. (2011) X X X MOCell

GDE3
Chicano et al. (2012) X X X MOCell
Luna et al. (2011) X X DEPT

MO-FA
- GA: Genetic Algorithm - HC: Hill Climbing Continued on next page...
- NSGA-II: Non-dominated Sorting Genetic Algorithm II - RS: Random Search
- SPEA2: Strength Pareto Evolutionary Algorithm 2 - SA: Simulated Annealing
- PAES:Pareto Archived Evolution Strategy - ACO: Ant Colony Optimization
- EHH: Evolutionary Hyper-heuristic - PBIL: Population-based incremental learning
- MA: Memetic Algorithm - IWD: Intelligent Water Drops
- PSO: Particle Swarm Optimization - FA: Firefly Algorithm
- GE-HH: Grammatical Evolution Hyper-Heuristic - WOA: Whale Optimization Algorithm
- NCRO: Non-dominated Chemical Reaction Optimization

2.3 SOFTWARE PROJECT SCHEDULING PROBLEM 27

Paper Evolutionary algorithms Swarm intelligence Other
algorithmsGA NSGA-II SPEA-II PAES Other MOEAs PSO ACO

Luna et al. (2014) X X X DEPT
MOCell
MOABC
MO-FA
GDE3

Chang et al. (2001) X
Chang et al. (2008) X HC
García-Nájera and
del Carmen Gómez-
Fuentes (2014)

X X

Minku et al. (2012) X (1+1) EA
Minku et al. (2013) X (1+1) EA

and RS
Ngo-The and Ruhe
(2008)

X

Duggan et al. (2004) X
(NSGA)

Xiao et al. (2013) X X
Gueorguiev et al.
(2009)

X RS

Jin and Yao (2014) X PBIL
Suri and Jajoria
(2013)

X

Di Penta et al. (2011) X X HC and SA
Antoniol et al. (2004) X HC and SA
Rodríguez et al.
(2011)

X

Gonsalves and Itoh
(2010)

X

Dupuy et al. (2013) X
Hanne and Nickel
(2005)

Custom MOEA

Wena and Lin (2008) X X
Crawford et al.
(2014)

X

Crawford et al.
(2016a)

IWD

Crawford et al.
(2016b)

FA

Wu et al. (2016) EHH
Xiao et al. (2015) X
Shen et al. (2015) Based on

ε-MOEA
Shen et al. (2018) MA

- GA: Genetic Algorithm - HC: Hill Climbing
- NSGA-II: Non-dominated Sorting Genetic Algorithm II - RS: Random Search
- SPEA2: Strength Pareto Evolutionary Algorithm 2 - SA: Simulated Annealing
- PAES:Pareto Archived Evolution Strategy - ACO: Ant Colony Optimization
- EHH: Evolutionary Hyper-heuristic - PBIL: Population-based incremental learning
- MA: Memetic Algorithm - IWD: Intelligent Water Drops
- PSO: Particle Swarm Optimization - FA: Firefly Algorithm
- GE-HH: Grammatical Evolution Hyper-Heuristic - WOA: Whale Optimization Algorithm
- NCRO: Non-dominated Chemical Reaction Optimization

28 2 RELATED STUDIES

2.4 Project Team Composition and Effectiveness

The previous sections focused on the formalized problems of project scheduling

and staff allocation. To understand the human aspects of these problems, we step

out of these formalized frameworks, and briefly review the implications of project

team effectiveness from the perspectives of industrial psychology. While traditional

job analysis methods identify the knowledge, skills, and abilities (KSAs) needed

for individual job performance, they tend to be insensitive to the social context

in which work occurs (Muchinsky, 2006). As many studies in the field of team

composition emphasize, choosing team members on the basis of individual-task

KSAs alone is not enough to ensure team effectiveness (see, e.g, Klimoski and

Jones 1995; Salas and Burke 2002; Muchinsky 2006; Chen et al. 2014). Note that,

similar to traditional job analysis methods, the SPSP follows this oversimplified se-

lection mechanism, which may result in low-performing project teams. To overview

potential directions of improvement, the two basic approaches of assembling high-

functioning project teams are discussed in the following. According to Chiocchio

et al. (2015), these are the individual characteristics approach and the jigsaw puzzle

approach.

2.4.1 Individual Characteristics Approach

This approach is based on the general assumption that when we predict the per-

formance of a team, some personal characteristics matter much more than others

(Chiocchio et al., 2015). Determining what these relevant characteristics are – and

how the distribution of each, within a team, relates to the team’s performance – be-

comes the aim of the team composition research within this approach (Chiocchio

et al., 2015). Based on the literature, these characteristics are mainly related to

individual KSAs and personality types.

2.4 PROJECT TEAM COMPOSITION AND EFFECTIVENESS 29

2.4.1.1 Knowledge, Skills, and Abilities

Since a team, by definition, is a social entity that interact in a larger social context

Muchinsky (2006), team composition based on individual KSAs requires a team-

level approach (Klimoski and Jones, 1995). According to Salas and Burke (2002),

successful team members need two general types of skills: taskwork skills that

are needed to perform the actual task, and different behavioral, cognitive, and at-

titudinal skills – so-called teamwork skills – to coordinate their actions and work

independently. As they argue, “although taskwork skills are the foundation for the

operational side of performance, teamwork skills are the foundation for the neces-

sary synchronization, integration, and social interaction that must occur between

members for the team to complete the assigned goal” (Salas and Burke, 2002, p.

240). In line with Konak et al. (2019), effective teamwork requires KSAs in a set of

diverse areas including leadership, communication, group decision-making, negoti-

ation skills, team motivation, conflict resolution, social skills, understanding of di-

versity, responsibility, and accountability. In addition, Stevens and Campion (1999)

developed a paper-and-pencil selection test for staffing work teams. The KSAs,

measured by the test, reflected conflict resolution, collaborative problem solving,

communication, goal setting and performance management, and planning and task

coordination.20 According to their findings, the consideration of individual level

KSAs can have both conceptual and practical value in the staffing of work teams.

2.4.1.2 Personality

As another key factor of the individual characteristics approach, researchers have

investigated the personalities of team members (see, e.g., Hogan et al., 1988; Smith-

Jentsch et al., 1996; Barry and Stewart, 1997; Yilmaz et al., 2017). Two most

widely applied and studied models are the Big Five (see, e.g., Goldberg 2013) and

the Five-Factor Model (Costa Jr and McCrae, 2008). Although these models were
20 The conceptual framework of teamwork KSAs introduced by Campion et al. (1994).

30 2 RELATED STUDIES

developed by applying two different methodologies, they converged on the same

five factors of personality: agreeableness (warm, polite, trusting), conscientious-

ness (achievement-driven, diligent, organized), extraversion (sociable, gregarious,

active), emotional stability (low anxiety, anger, and self-consciousness), and open-

ness to experience (intellectual, artistic). According to Neuman and Wright (1999),

the validity of Big Five personality factors can be extended to the prediction of

team performance. Based on their findings, conscientiousness and agreeableness

predicted various dimensions of team performance, while agreeableness predicted

ratings of the interpersonal skills of team members. Bell (2007) supports the relev-

ance of team personality composition operationalized as the group means, since it

reported that for each of the Big Five personality traits, group means were positively

correlated with team performance. Yilmaz et al. (2017) investigates the personality

traits of 216 employees from a middle-sized software company to explore effective

software team structures. They experienced that not all traits were equally present in

the company. While individuals with traditional tasks matched with the traditional

characteristics, agile teams are found to be more extroverted. Based on Schmitt

et al. (1984); Hunter et al. (1990), considering personalities is useful in general,

but purely personality-based allocation strategies provide weaker predictions on the

effectiveness of teamwork than strategies based on individual KSAs.

2.4.2 Jigsaw Puzzle Approach

The jigsaw puzzle approach (see, e.g., Allen and West 2005; Chiocchio et al. 2015

– or configuration perspective (see, e.g., Schneider and Smith 2004) – provides an

even more complex view of teamwork effectiveness than the individual approach.

According to Chiocchio et al. (2015), here the question is not whether a team’s

means or variability on a single variable influences performance, but whether the

members of a team “fit together” – or complement each other – based on the par-

ticular combination of several variables associated with each member. “Just as a

2.4 PROJECT TEAM COMPOSITION AND EFFECTIVENESS 31

given puzzle piece will not fit into all existing sets of interlocking pieces, a given

person will fit successfully into teams with some people configurations, but not oth-

ers” (Chiocchio et al., 2015, p. 303). Within this approach, team roles and personal

compatibility are the most extensively studied topics.

2.4.2.1 Team Roles

Based on (Sarbin, 1954, p. 223), role theory “is an interdisciplinary theory in that

its variables are drawn from studies of culture, society, and personality”. Roles are

important in teams because they represent patterns of behavior that relate to the

activities of other team members in pursuit of the overall team goal (Driskell et al.,

2017). The most prominent among the team role theories is Belbin’s (1993; 2010;

2014) team role model. This model states that in teamwork, individuals tend to

play different type of roles beyond the usual functional roles associated with their

technical activities (Fernandes, 2007; Branco et al., 2015). In his early publica-

tion (Belbin, 1981), Belbin defined eight roles that are necessary for a team to be

successful: plant, monitor evaluator, shaper, completer finisher, company worker,

chairman, resource investigator, teamworker. Later he added a ninth role, the spe-

cialist, and renamed the chairman to coordinator and the company worker to imple-

menter (Belbin, 1993, 2010). Furthermore, the nine roles may also be categorized

as thinking, action, and social roles (Belbin, 2014). Based on his findings, teams

work best when there is diversity in team members, and individual roles mixed in a

team can make a team more effective. The nine team roles are detailed in Table 6.

32 2 RELATED STUDIES

TABLE 6. Descriptions of Belbin team roles

(Sources: Belbin, 2010, p. 22 and Belbin, 2014, p. 12)

Team role (notation) Category Contribution Allowable weakness

Plant (PL)

T
hi

nk
in

g
ro

le
s

Creative, imaginative, free-
thinking. Generates ideas and
solves difficult problems.

Ignores incidentals. Too preoccu-
pied to communicate effectively.

Specialist (SP) Single-minded, self-starting, dedic-
ated. Provides knowledge and skills
in rare supply.

Contributes only on a narrow front.
Dwells on technicalities.

Monitor evaluator (ME) Sober, strategic and discerning.
Sees all options and judges accur-
ately.

Lacks drive and ability to inspire
others. Can be overly critical.

Shaper (SH)

A
ct

io
n

ro
le

s

Challenging, dynamic, thrives on
pressure. Has the drive and courage
to overcome obstacles.

Prone to provocation. Offends
peoples feelings.

Completer finisher (CF) Painstaking, conscientious,
anxious. Searches out errors.
Polishes and perfects.

Inclined to worry unduly. Reluctant
to delegate.

Implementer (IMP) Practical, reliable, efficient. Turns
ideas into actions and organises
work that needs to be done.

Somewhat inflexible. Slow to re-
spond to new possibilities.

Coordinator (CO)

So
ci

al
ro

le
s

Mature, confident, identifies talent.
Clarifies goals. Delegates effect-
ively.

Can be seen as manipulative. Of-
floads own share of the work.

Resource investigator (RI) Outgoing, enthusiastic, communic-
ative. Explores opportunities and
develops contacts.

Over-optimistic. Loses interest
once initial enthusiasm has passed.

Teamworker (TW) Co-operative, perceptive and diplo-
matic. Listens and averts friction.

Indecisive in crunch situations.
Avoids confrontation.

Note that: strength of contribution in any one of the roles is commonly associated with particular weaknesses.
These are called allowable weaknesses. Executives are seldom strong in all nine Team Roles.

Belbin’s theory has been applied in several software-related investigations to eval-

uate the impact of the different team roles on project teams (see, e.g., Henry and

Stevens 1999; Thomas 1999; Schoenhoff 2001; Stevens and Henry 2002; Simeun-

ovic and Landelius 2017; Karabeleski and Avdic 2018). From these, Thomas (1999)

found evidence that Belbin’s roles provide useful information to form software

teams, and also emphasized that teams that contain one – and only one – leader

perform better than teams with no leader or multiple leaders. Similarly to Simeun-

ovic and Landelius (2017), Karabeleski and Avdic (2018) experienced that not all

roles are needed for a successful project. They also found that the most effective

teams contained different roles that still had some personality traits in common. In

line with these results, to support cooperation within project teams, Kurbucz (2013)

presents a formalized method for team composition, which – in addition to indi-

vidual KSAs – also takes the roles of team members into account.

2.4 PROJECT TEAM COMPOSITION AND EFFECTIVENESS 33

2.4.2.2 Personal Compatibility

Other jigsaw puzzle theories emphasize the personal compatibility among team

members. The main idea behind this approach is that team members’ personalit-

ies may need to be complementary – or “fit together” – in order for the team to

achieve its potential (Chiocchio et al., 2015). One of the most widely adopted the-

ories in this field is the Fundamental Interpersonal Relationship Orientation (FIRO)

theory proposed by Schutz (1955, 1959, 1992). According to Schutz (1955, 1959,

1992), people’s intention to interact with others can be measured by three phases –

inclusion, control, and affection. In line with (Anop and Aldaghi, 2010, p. 3), these

phases describe and explain a team’s development as follows:

1 Inclusion: “The team is formed and the members get to know each other during

the Inclusion phase. The project manager maps out the objectives of the project,

which have to be achieved by the team.”

2 Control: “The project manager identifies each team members’ values during this

phase. This phase satisfies the members’ social need or individual attention and

their sense of contributing to the overall project.”

3 Openness: “By this phase the team is working well and strong group identity has

developed. An atmosphere of openness has developed within the team. In the

last phase the group becomes highly efficient. All teams are not progress to the

Openness phase. When changes in personnel occur in the team, it is common for

it to take one or more steps backwards in its development.”

To be employed empirically, FIRO was operationalized as FIRO-B (FIRO behavior)

(Schutz, 1959, 1992). As reported by Furnham (1990, 1996), FIRO-B was one

of the three most widely used surveys in occupational psychology at the date of

publication of his studies. Nevertheless, as Chiocchio et al. (2015) argue, the most

relevant research has not found robust correlations involving compatibility on the

needs measured by the FIRO-B and team performance (Moos and Speisman, 1962;

Shaw and Webb, 1982). Moreover, there is limited literature of FIRO-B on the

composition of software development teams.

34 2 RELATED STUDIES

2.5 Sociometry and Synergy Networks

Although it is simpler to predict a team’s outcome based on the aggregate skills of

its members, as presented in the previous section, interactions among employees

may have a great effect on team performance (Hsu et al., 2016). The concept that

captures this phenomenon is called synergy (see, e.g., Tannenbaum et al., 1992;

Mears and Voehl, 1994; Hoopes and Postrel, 1999; Hong et al., 2004; Ruiz and

Fuentes, 2017) or synergy effect (see, e.g., Raluca, 2012; Scholtes et al., 2016; Ren

et al., 2018) between team members. According to (Scholtes et al., 2016, p. 2), “the

collaboration of developers in a team can give rise to synergy effects, which result

in the team being more productive than one would expect from simply adding up

the individual productivities of its members.” In addition, its opposite form – the

so-called negative synergy (effect) – can also emerge within a team, and leads to

weaker than expected productivity (see, e.g, Carbonell and Rodríguez Escudero,

2019; Ruiz and Fuentes, 2017). The aim of this section is to present a network

model that can quantify the positive and negative synergies of employees. Since in-

dustrial sociology deals with the analysis of models similar to the synergy network,

and since industrial sociologists, similarly to industrial psychologists (see Section

2.4) have put a significant effort into investigating the reasons behind teamwork

effectiveness, we will first briefly review their results.

Industrial sociology examines the effectiveness of teamwork (synergy of team mem-

bers) in the light of formal and informal relationships between team members.

When software developers know each other well and understand each other’s needs,

their collective sense-making enables them to perform their individual activities

in ways that take into account the activity needs of other team members (Crow-

ston and Kammerer, 1998; Espinosa et al., 2007). In line with this, Espinosa et al.

(2007) found that the benefit of team familiarity on the software development team’s

performance is enhanced when team coordination is more challenging, i.e., when

teams are larger or geographically dispersed. To investigate the social structure

or, more generally, interdependence among group members, researchers use soci-

ometry (Moreno, 1960; Sorenson, 1971).

2.5 SOCIOMETRY AND SYNERGY NETWORKS 35

Although we have limited information on how the structural properties of a soci-

ometric network – the so-called sociogram (see, e.g., Zorrilla and de Lima Silva,

2019) – affect collective performance, several publications have focused on this

issue (see, e.g., Sparrowe et al., 2001; Ahuja et al., 2003; Cummings and Cross,

2003). Based on Ahuja et al. (2003), centrality indicators of the social network are

stronger direct predictors of performance than the individual characteristics, e.g.,

functional role, status or communication role.21 Sparrowe et al. (2001) observed

that groups with decentralized structures performed better at complex tasks than

groups with centralized structures, and as stated in Cummings and Cross (2003),

more hierarchical structure and greater core-periphery discrepancies were negat-

ively related to performance.

In contrast with these results, Shaw (1964) demonstrated that groups with decent-

ralized communication nets took less time to finish complex tasks than groups with

centralized communication nets. Sanchez et al. (2017) analyzed 899 IT projects of

a leading bank, and they found that the success of project management was posit-

ively impacted by not only the size, duration and the postponement of the project,

but also the formal power of the project manager. Furthermore, they observed that

smaller and less dispersed teams have better results than larger and sparse teams in

addressing a multiplicity of projects. Yang and Tang (2004) and Wu et al. (2008)

found positive relationship between the cohesion and centrality of software devel-

opment teams and their overall effectiveness. Furthermore, Yang and Tang (2004)

emphasized that conflict indexes were not significantly correlated with the final per-

formance of the teams examined.22

21 Typically, four measures of centrality are used in the literature: degree, betweenness, closeness
and eigenvector centrality (Mote, 2005).

22 Sparrowe et al.’s (2001) and Yang and Tang’s (2004) calculations are based on in- and out-
degree centrality. Sanchez et al. (2017) used closeness and eigenvector, while Wu et al. (2008)
applied betweenness centrality (see, e.g., Sridharan and Balakrishnan, 2019).

36 2 RELATED STUDIES

Over the past decade, multiple network models of synergies between team mem-

bers have emerged (see, e.g., Liemhetcharat and Veloso, 2014; Melo and Sardinha,

2016; Dzvonyar et al., 2018). In these networks, nodes indicate the employees and

the weighted edges between them typically represent the estimated effectiveness

of their joint work. For the sake of simplicity, these networks typically represent

employees’ pairwise synergies (see, e.g., Liemhetcharat and Veloso, 2012, 2014;

Brown, 2020) instead of groupwise ones, which makes team composition easier.

Note that although these models are similar in structure to sociograms, synergies

are difficult to measure and can be primarily used to support team composition

rather than to perform an empirical analysis. In line with Källo et al. (2013), the ad-

jacency matrix of the synergy network can be visualized by a DSM method. Fig. 8

presents both the network and the DSM representation of the same pairwise synergy

structure.

FIGURE 8. DSM and network representation of pairwise synergies
(Source: own figure)

2.6 Research Assumptions

Although most psychological and sociological approaches emphasize the complex-

ity of the project team, none of the applied models can handle the interdependence

of employees. Moreover, while the MS-RCPSP has already been extended to sup-

port flexible project planning, the SPSP cannot handle logical planning uncertainties

(Cram and Marabelli, 2018). Since this flexibility and employee interdependencies

2.6 RESEARCH ASSUMPTIONS 37

are particular characteristics of IT projects (Rodriguez-Repiso et al., 2007; Iriarte

and Bayona, 2020) as well as their APM practices (Fowler et al., 2001; Jalote and

Vishal, 2003), this dissertation is focused on the study and elimination of these

shortcomings. According to the literature related to the effectiveness of project

teams, formal and informal relationships between employees can be a source of

positive or negative synergies that significantly affect the performance of the pro-

ject team (Ahuja et al., 2003) or, consequently, the outcome of the project (Sanchez

et al., 2017). The structure of these relationships are often studied by using soci-

ometric networks, however, the results in this area are contradictory. While Ahuja

et al. (2003) and Cummings and Cross (2003) emphasize the beneficial impact of

decentralized, less hierarchical structures on performance, Sanchez et al. (2017)

found a positive connection between the formal power of the project manager, as

well as the smaller, less dispersed teams, and the success of IT projects. Although

employee interdependencies have a significant impact on project outcomes – espe-

cially for (software) projects managed by an APM approach –, no planning method

has yet been developed to study or apply the phenomenon in practice.

Based on a review of the literature, one research assumption is formulated for each

of the four research questions (see RQs in Chapter 1.2). The four research assump-

tions (RAs) of the dissertation are as follows:

RA1: The classical software project scheduling problem can be extended by con-
sidering flexible task dependencies and synergies between resources.

RA2: The multi-domain matrix (MDM) can be specified to a flexible multi-domain
matrix whose interconnected domains model the flexible project plan, the
skills of human resources as well as the synergies between them.

RA3: Using metaheuristic algorithms, it is possible to find a feasible solution to
the project scheduling problem that takes into account flexible task depend-
encies and synergies between resources.

RA4: By supplementing existing or generated project databases with flexible task
dependencies and resource synergies, it is possible to create a simulation
environment to examine the impact of human resource synergies and skills,
as well as project size, flexibility, and constraints, on project feasibility.

CHAPTER 3

Methods

This chapter first gives a detailed introduction of classical and synergy-based SPSPs.

It then presents a hybrid genetic algorithm as well as a simulation framework that

can be used to solve and study these problems.

3.1 Formal Description of the (S)SPSP

This section contains a formal description of the SPSP as well as that of its ex-

tension, i.e., the SSPSP. Unlike other reported studies of this topic, for clarity and

flexible planning, I use a matrix-based method to define the problem. The proposed

matrix-based method is a specification of the MDM method (see Danilovic and

Browning, 2007). As it was discussed in Section 2.2.3, the original MDM version

allows several domains that can interact with one another; however, the original

MDM only handles fixed dependencies and task occurrences (see, e.g., Danilovic

and Browning, 2007; Browning, 2014). Contrary to the original method, the pro-

posed synergy-based multi-domain matrix (SMM) considers flexible dependencies

and supplementary task completions in order to support the synergy-based software

project scheduling problem (SSPSP). The SSPSP is based on a combination of the

agile approach and sociometric – or more precisely, synergy – graphs. To formu-

late the problem, I extend the notation of Alba and Chicano (2007) and Luna et al.

(2014). Since it is solved via the proposed multi-domain matrix-based method, the

necessary domains (submatrices) are also specified.

38

3.1 FORMAL DESCRIPTION OF THE (S)SPSP 39

3.1.1 Notation

First, the mathematical definitions, necessary for stating the problem and the solu-

tion algorithm, are determined. Here, I follow the formulation proposed by Alba

and Chicano (2007) and Luna et al. (2014), but unlike these models, I also consider

the levels of skills and synergy between employees.

Briefly: We are given a set of employees with ± synergies among them and pos-

sessing certain (individual) levels of some skills, in order to solve certain tasks that

require certain levels of these skills. We must decide which tasks should be done

(possibly not all of them) and their order, and we must distribute (allocate) the em-

ployees (possibly in part time) to solve the chosen tasks, fulfilling several other

requirements and achieving some optimums (see Eqs. (32) - (35) for details). The

set of all of these decisions made by the algorithm is called a project scenario.

All of the data are stored in a large matrix called SMM, containing several blocks

that are called domains, as shown in Fig. 9.

In detail:

• E = {e1, . . . , em} is the set of employees (m ∈ N+).

• Y is called the synergy domain in the proposed SMM. It is a symmetric m by

m matrix of nonnegative real numbers (Y ∈ (R+)
m×m), denoting the synergies

among the employees as (for i, j = 1, 2, ...,m):

– [Y]i,j > 1 represents positive,

– [Y]i,j = 1 represents neutral,

– 0 < [Y]i,j < 1 represents negative synergy between employees ei and ej , and

[Y]i,i = 1 and [Y]i,j = [Y]j,i are assumed.23

23 Observe that both the positive and negative synergies are represented by positive real numbers,
where Y: 0 < [Y]i,j < 1 stand for negative and 1 < [Y]i,j for positive synergies. By default,
[Y]i,j = 1, which is assumed in Alba and Chicano (2007) and Luna et al. (2014).

40 3 METHODS

FIGURE 9. Synergy-based multi-domain matrix (SMM)
(Source: own figure)

3.1 FORMAL DESCRIPTION OF THE (S)SPSP 41

• For any subset ε ⊆ E, we let:

Y ε :=

1

η

√ ∏
i,j∈ε

∏
i<j

[Y]i,j , where η = |ε|·(|ε|−1)
2

if |ε| ≤ 1

if |ε| > 1,

(1)

the (geometric) mean of synergies among the employees in ε.

• S = {σ1, . . . , σs} is the set of skills (s ∈ N).

• Each employee may have a set of skills, i.e., person ei has skills:

S (ei) :=
{
σ
(i)
1 , . . . , σ

(i)
ρi

}
⊆ S. (2)

• The proposed model also handles the levels of skills: ` (ei, σk) ≥ 0 is the level

of ei in σk (1 ≤ i ≤ m, 1 ≤ k ≤ s); clearly, σk ∈ S (ei) ⇐⇒ 0 < ` (ei, σk).24

These levels can be added, e.g., ei1 and ei2 working together achieve σk:

[Y]i1,i2 · (` (ei1 , σk) + ` (ei2 , σk)). (3)

For a larger set ε ⊆ E, we can only use the approximate formula:25

` (ε, σk) := Y ε ·
∑
i∈ε

` (ei, σk). (4)

(Note that this formula will be modified by the matrix O later.)

24 Note that the set of skills (S) are defined in light of the activities associated with them. For
instance, if an employee (ei) has a given level of Python programming skills (`(ei, σk)) that is
insufficient to participate in the given task (ai), where intermediate skill is required, then `(ei, σk) =
0 and the label of the skill should reflect the required level of skill, such as intermediate Python
programming.

25 We may think ` (ei, σk) = 0 or ` (ei, σk) = 1 in Alba and Chicano (2007) and Luna et al.
(2014), without a summing possibility.

42 3 METHODS

• S is the m by s matrix [S]i,k := ` (ei, σk) is called the skill domain in the SMM

matrix.

• A = {a1, . . . , an} is the set of tasks (or activities) to be performed (n ∈ N).

Ac ⊆ A is the subset of mandatory (or compulsory) and A− := ArAc is the set

of supplementary tasks. Supplementary tasks can be removed from the project or

postponed to a later project if they cannot be implemented due to constraints.

• The algorithm will choose which supplementary tasks will be carried out, but it

must perform each compulsory task. The final set of tasks to be carried out is

denoted by Ac(O); clearly, Ac ⊆ Ac(O) ⊆ A must hold.

• Among all of the tasks, we have dependencies ≺,∼,1 with the following mean-

ings. For any i, j ≤ n, i 6= j:

– ai ≺ aj means a strict (or required) dependency: aj must not be started unless

ai has been completed,

– ai ∼ aj means no dependency: the starting time of aj is not affected by ai,

– ai 1 aj means an uncertain (or flexible) dependency: the algorithm must turn

each ai 1 aj into either (i) ai ≺ aj or aj ≺ ai or (ii) ai ∼ aj . In case (i),

we say that the dependency ai 1 aj is included in the project, in case (ii) it is

excluded.

• Clearly, ≺ is a partial order that excludes cycles such as a1 ≺ a2 ≺ . . . ≺ a1,

while 1 and ∼ are symmetric relations.26

• A is called the logic domain in the SMM.27 It is the n by n matrix storing the

above information as:28

– [A]i,i = 1 ⇐⇒ ai is mandatory,

26 By a standard topological ordering algorithm, we may assume that ai ≺ aj =⇒ i < j.
27 Note that PEM (Kosztyán et al., 2010) and PDM (Kosztyán, 2015; Kosztyán et al., 2020) meth-

ods contain a similar domain (see Section 2.2.3).
28 i < j and A is an upper triangle matrix by footnote 26.

3.1 FORMAL DESCRIPTION OF THE (S)SPSP 43

– 0 < [A]i,i < 1 ⇐⇒ ai is supplementary (score value or relative priority of

ai),

– [A]i,j = 1 ⇐⇒ ai ≺ aj ,

– [A]i,j = 0 ⇐⇒ ai ∼ aj ,

– 0 < [A]i,j < 1 ⇐⇒ ai 1 aj (score value or relative priority of ai 1 aj). (The

values [A]i,j will also be called probabilities in constraint C5.)

• The algorithm must modify the elements of A, such that 0 < [A]i,i < 1 and 0 <

[A]i,j < 1 (and leave the others unchanged), where the final matrix is denoted by

A(O), which contains only the 0 and 1 entries.

• The set of skills that are required to perform activity aj is denoted by S (aj) :={
σ
(j)
1 , . . . , σ

(j)
ρj

}
⊆ S (j = 1, 2, ..., n).

• More specifically, if the minimum level of σk required for aj is a nonnegative real

number. L (aj, σk) ∈ R, then we must have σk ∈ S (aj) ⇐⇒ 0 < L (aj, σk)

and L (aj, σk) ≤ ` (εj, σk) (εj ⊆ E will be chosen by the algorithm).

• W is the n by s matrix storing L, i.e., [W]j,k := L (aj, σk), W is called the

skilled work domain (in SMM), its elements wj,k = [W]j,k are called skilled

work elements.

• M is an m by n matrix, called the matching domain, where [M]i,j ∈ [0, 1] is the

maximal (allowed) ratio of the working time of employee ei allocated to (working

on) task aj .29

• The solution of the SSPSP that must be determined by the algorithm is an n

by m matrix (of nonnegative real numbers), denoted by O, where the element

[O]j,i > 0 represents the (final) allocation of employee ei to activity aj .

29 At this point, the literature assumes the equivalent effectiveness of human resources who have
the skills to perform the task. However, the proposed model also addresses both the level of skills
and synergy as multiplicative factors that can increase or reduce the effectiveness.

44 3 METHODS

• The value [O]j,i is the proposed ratio of the working time of ei allocated to aj;

clearly, [O]j,i = 0 means no allocation. [O]j,i ≤ [M]i,j and
n∑
j=1

[O]j,i ≤ 1 must

hold for each j = 1, 2, ..., n and i = 1, . . . ,m, while
n∑
j=1

[M]i,j ≤ 1 are not

required for any i = 1, . . . ,m.

• [O]j,i will sometimes be denoted by aeij .

• The duration of activity aj is denoted by adurj (O). (This depends on resources

modified by the synergy factor, as calculated in Eqs. (11) and (12). The starting

time of aj is astartj (O), and the finishing time is aendj (O) = astartj (O) + adurj (O)

(see Eq. (13)).30

• The duration of the project is denoted by pdur or TPT (the total project time), and

its cost is by pcost or TPC (the total project cost).

• Each employee ei can be allocated partially or entirely to the project, where the

total of ewi :=
n∑
j=1

[O]j,i, not exceeding its maximum value emaxwi :=
n∑
j=1

[M]i,j .

Clearly, 0 ≤ ewi ≤ 1 by
n∑
j=1

[O]j,i ≤ 1. (See the matching domain (M) in Fig. 9.)

• The monthly salary of employee ei is denoted by esalaryi .

• The notations of structural parameters of synergy networks are summarized in

Table 7.31

TABLE 7. Analyzed centrality and proximity metrics
(Source: own table)

Notation Metrics
(node level, average)

BC Betweenness centrality
CC Closeness centrality
DC Degree centrality
PP Proximity prestige

30 Recall that ai ≺ aj implies aendi (O) ≤ astartj (O).
31 The average of node-level centrality metrics and proximity prestige are calculated based on

(Saxena and Iyengar, 2020, p. 10) and (Musiał et al., 2009, p. 2), respectively.

3.1 FORMAL DESCRIPTION OF THE (S)SPSP 45

3.1.2 Formalism Related to Project Duration

Assume that the algorithm has already fixed all of the supplementary tasks and

flexible dependencies (stored in A and in A (O)), as well as the allocations of ei

to aj (stored in O). In the following, all of the aj mentioned below have already

been decided by the algorithm to be compulsory. Note that Alba and Chicano (2007)

assumed that there was no change in the allocation of a certain employee to a certain

activity while it was being performed.

The total effort that is allocated to aj (j = 1, 2, ..., n) is:

Aj :=
m∑
i=1

aeij =
m∑
i=1

[O]j,i. (5)

For any task aj (j = 1, ..., n) let:

εj := {i ≤ m : 0 < [O]j,i} (6)

be the set of employees who are effectively working on (allocated to) aj .32

Since we do measure the levels of skills, which must be summed separately, we

have to consider all the skills separately. For any skill σk, the amount (level) of

work on σk that the team εj completes in aj is (without synergies):33

Awj (k) :=
m∑
i=1

([S]i,k · [O]j,i) =
∑
i∈εj

` (ei, σk) · [O]j,i . (7)

Considering the synergies, the adjusted amount of work done by σk is:

Aw,adjj (k) := Y εj · Awj (k). (8)

32 The employees are assumed to work together, i.e., parallel.
33 The sum that may be written for all i since [O]j,i = 0 for i /∈ εj .

46 3 METHODS

Since task aj requires L (aj, σk) = [W]j,k amount of skill σk, the required time

(duration) for completing σk in aj by εj without synergies is:

adurj,k (O) =
L (aj, σk)

Awj (k)
=

[W]j,k
m∑
i=1

([S]i,k · [O]j,i)
, (9)

and the adjusted required time (with synergies) is:

adur,adjj,k (O) =
L (aj, σk)

Aw,adjj (k)
=

[W]j,k

Y εj ·
m∑
i=1

([S]i,k · [O]j,i)
. (10)

Assuming that each ei uses all of his/her skills simultaneously:

adurj (O) = max
k∈S(aj)

{
adurj,k (O)

}
, (11)

and

adurj (O) := adur,adjj (O) = max
k∈S(aj)

{
adur,adjj,k (O)

}
. (12)

Of course, completing aj requires all necessary skills to be covered.34 This value is

used to calculate the ending times of the activities aendj (O) = astartj (O) + adurj (O),

where:

astartj (O) ≥

 0

max{aendi (O) : ai ≺ aj}

if @ ai ∈ A, ai ≺ aj

otherwise
. (13)

At this point, I also note that the referenced studies have not addressed the cases

in which an activity cannot be started because there are no available resources for

performing that activity, even though all of its prerequisite activities have been fin-

ished. Moreover, I assume that the starting time of the project is 0. (Clearly, ai and

former 1 in Eq. (13) and hereinafter are decided by the algorithm to be carried out

and be converted to ≺.)

34 I.e. S (aj) j
⋃

i∈εj
S (ei) , since for k /∈

⋃
i∈εj

S (ei) the denumerators of Eqs. (9) and (10) are

zero. See also Constraint 2 (C2) in Eq. (22) in Section 3.1.4.

3.1 FORMAL DESCRIPTION OF THE (S)SPSP 47

The values calculated above enable calculating the duration of the project (pdur) as

follows:

TPT := pdur = max{aendj (O) : j = 1, . . . , n}. (14)

I must emphasize that the values astartj (O) in Eq. (13) and TPT in Eq. (14) are

minimal: no algorithm can start aj and finish the project earlier than in Eqs. (13)

and (14), so they can be denoted by astartj (O)min and TPTmin. However, in practice,

it is possible that some activities cannot be started at astartj (O)min (e.g., because

of the lack of human resources). Therefore, the proposed algorithm is allowed to

schedule some (even all) tasks aj later than astartj (O)min, as described by:

astartj (O)ALG ≥ astartj (O)min, (15)

where astartj (O)ALG is the real starting time for the task aj . Clearly, adurj (O)ALG =

adurj (O)min, aendj (O)ALG = astartj (O)ALG + adurj (O)ALG and:

astartj (O)ALG ≥

 0

max{aendi (O)ALG : ai ≺ aj}

if @ ai ∈ A, ai ≺ aj

otherwise
(16)

must also hold.35 We also require:

TPTALG ≥ TPTmin. (17)

The sequence (of real numbers) is called:

(astart1 (O)ALG, ..., a
start
n (O)ALG) (18)

scheduled start time sequence (SST). In the following, I omit the subscripts min

and ALG, and I always mean ALG, unless stated otherwise.

35 An explicit formula can be obtained for TPT from the recursive assumptions in Eqs. (11)-(16),
mainly based on ≺, called the critical or longest min paths (see Kosztyán and Szalkai, 2018, 2020
and Kosztyán et al., 2019 for details).

48 3 METHODS

Fig. 9 presents several networks such as a single project (see the logic domain,

A and the project graph on the bottom right corner of Fig. 9), a synergy network

(see the synergy domain, S and the synergy graph in the top left corner of Fig.

9), possible matches between employees and tasks (see the matching domain, M

and the employee-task matching graph in the top right corner of Fig. 9), and the

output domain (O). The skill domain (S) represents the level of skills, while the

amount of required (skilled) works are specified in the skilled works domain (W). A

prerequisite for project success is that the required skills are available. The proposed

matrix-based model only represents the required available skills. The goal is to

assign employees to tasks to achieve a good feasible solution with respect to the

composite objective function (see Eq. (35)) and constraints (see C1-C8 in Section

3.1.4).

3.1.3 Formalism Related to the Project Cost

The cost of the project (TPC, pcost) can be calculated as the sum of the salaries of

employees that are paid for their dedication to the project. Since positive synergy

reduces and negative synergy increases the duration adurj to adurj , the project cost can

be calculated with and without the synergy effect, obtaining TPCsyn and TPCnosyn,

respectively. Formally:

TPCsyn = TPC := pcost =
m∑
i=1

n∑
j=1

(esalaryi × [O]j,i × adurj (O)), (19)

TPCnosyn :=
m∑
i=1

n∑
j=1

(esalaryi × [O]j,i × adurj (O)). (20)

3.1.4 Constraints

While a solution to the SSPSP is calculated, several constraints must be taken into

account and be satisfied. First, these constraints are listed, and then I explain each

of the constrains in detail.

3.1 FORMAL DESCRIPTION OF THE (S)SPSP 49

C1: Each activity must be performed by at least one human resource.

C2: The set of skills that an activity requires must be a subset of the union of skills
of the employees who perform this activity.

C3: There must not be any human resource who exceeds his or her maximum

dedication (allocation) to the project (roughly, ewi :=
n∑
j=1

[O]j,i ≤ emaxwi for

i = 1, . . . ,m).

There are two new constraints: the first specifies the set of implemented tasks, and

the second considers both the skill levels and the synergies among employees.

C4: The score of the project scenario (total project score, TPS; see Eq. (34)) is
greater than a specified (score) constraint Cs.

C5: The probability of the project structure is greater than a specified (probability)
constraint Cp.

The following three additional constraints are the constraints of the project plan:

C6: General overwork is not allowed (roughly Ew =
m∑
i=1

ewi ≤ Kw for some con-

stant Kw).

C7: The total project cost (TPC) must be less than the cost constraint (Cc).

C8: The duration of the project (the total project time, TPT) must be less than the
time constraint (Ct).

In the proposed model, a complex objective (target) function is specified. The goal

is to specify the most likely project structure and a resource allocation scheme that

minimizes the project duration in the most desired project scenario.

Now, we describe C1-C8 in detail.

C1: for each aj ∈ Ac(O),

εj := {ei ∈ E : 0 < [O]j,i} 6= ∅. (21)

50 3 METHODS

C2: for each aj ∈ Ac(O),

S (aj) ⊆
⋃
ei∈εj

S (ei). (22)

C3: Since several tasks cannot be solved simultaneously, the rate of the allocation

of ei may vary with time. Therefore, I create a function eworki (τ) (for 0 ≤ τ ≤

pdur) that determines how much work by employee ei is dedicated (allocated) to the

project for all of the parallel activities at time τ :

eworki (τ) :=
∑

{j | astartj ≤τ≤aendj , aj∈Ac(O)}

[O]j,i. (23)

(Here, I mean astartj (O)ALG ≤ τ ≤ aendj (O)ALG, according to SST of the al-

gorithm.) So, C3 is:

eworki (τ) ≤ emaxwi for i = 1, . . . ,m and τ. (24)

For C4 through C6, we need to define some additional terminology and notation.36

Let the score values of the implemented activity ai ∈ Ac(O) be Si := [A]i,i and the

score values of omitted one (ai ∈ A\Ac(O)) Si := 1− [A]i,i (i = 1, 2, ..., n).

The probability pi,j of the (input) dependency ai 1 aj for ai, aj ∈ Ac(O) is pi,j :=

[A]i,j if that dependency will be included in the project plan (i.e., changed to ai ≺

aj), and pi,j := 1− [A]i,j if not (i.e., changed to ai ∼ aj).37

The proposed model allows decision-makers to omit several supplementary activit-

ies from this project and allocate them to the next project (or the next sprint), i.e.,

Ac ⊆ Ac(O) ⊆ A.

36 We must be careful to distinguish the input data in Ac and in A from the output solution in
Ac(O) and in A (O).

37 i < j by footnote 26.

3.1 FORMAL DESCRIPTION OF THE (S)SPSP 51

For C4 through C6 we are given the (suitable) constants (positive real numbers) Cs,

Cp, Cc, Ct, Kw and εK .

C4:

TPS := n

√√√√ n∏
i=1

Si ≥ Cs. (25)

C5: ∑
ai,aj∈Ac(O), i 6=j

pi,j ≥ Cp. (26)

For C6, first, we construct the function overwork(τ) for 0 ≤ τ ≤ pdur as:

overwork(τ) :=

m∑
i=1

eworki (τ)−Kw

0

if
m∑
i=1

eworki (τ) > Kw

otherwise

, (27)

and the total overwork pover of the project:

pover :=

τ=pdur∫
τ=0

overwork(τ)dτ. (28)

Now, we set:

C6:

pover < εK. (29)

C7:

TPC := pcost ≤ Cc. (30)

C8:

TPT := pdur ≤ Ct. (31)

52 3 METHODS

Next, we must find TPTmin, TPCmin and TPSmax. From these, the minimum TPTmin

is reached if all of the uncertain tasks and flexible dependencies are omitted from the

project (i.e., Ac(O) = Ac and each 1 is changed to ∼), and if the maximum number

of employees is dedicated (allocated) to the activities (i.e., [O]j,i = [M]i,j).38

3.1.5 Objective Function

Now, we state the objective functions that we seek to optimize simultaneously (in

Eq. (35)) using the algorithm:

TPT→ min, (32)

and

TPC→ min, (33)

and

TPS→ max. (34)

These objective (target) functions can be considered a multi-objective problem or a

composite objective (target) function and can be specified as follows (here, Cs, Cp,

Cc and Ct are given reasonable constants):

z := 1− 3

√(
Ct − TPT
Ct − TPTmin

)
∗
(

Cc − TPC
Cc − TPCmin

)
∗
(

TPS− Cs
TPSmax − Cs

)
→ min,

(35)

assuming the constraints C1 − C8. Finally, similar to most of the SPSP literature,

I assume constant skills of the human resources for simplicity. However, several

studies address improvements in human skills, and the proposed model can also

be extended to take this into account. For example, Chang et al. (2008) introduce

an employee experience and training model that accounts for the learning speed of

employees and the time interval of training when calculating the improvement in

38 See Kosztyán and Szalkai, 2018, 2020 and Kosztyán et al., 2019 for details).

3.1 FORMAL DESCRIPTION OF THE (S)SPSP 53

employee skills. The model in Chang et al. (2008) influences how quickly employ-

ees can perform a specific task.

3.1.6 Summary of Notations

The notations are summarized as follows:

• E = {e1, . . . , em} = employees, ei ∈ E,

• [Y]i,j = synergy between ei and ej ,

• Y ε = η

√ ∏
i,j∈ε

∏
i<j

[Y]i,j geometric mean of synergies (see Eq. (1)),

• S = {σ1, . . . , σs} = skills, σk ∈ S,

• S (ei) :=
{
σ
(i)
1 , . . . , σ

(i)
ρi

}
= skills of ei, S (ei) ⊆ S,

• [S]i,k = ` (ei, σk) = the level of ei in σk, ` (ε, σk) := Y ε ·
∑
i∈ε
` (ei, σk),

• A = {a1, . . . , an} = tasks (activities), aj ∈ A:

– Ac = mandatory (compulsory), given, A− = Ar Ac supplementary,

– Ac(O) = compulsory tasks decided by the algorithm, Ac ⊆ Ac(O) ⊆ A,

– ai ≺ aj strict (or required) dependency, ai ∼ aj no dependency,

– ai 1 aj uncertain (or flexible) dependency,

• A = input matrix:

– [A]i,i = 1 ⇐⇒ ai is mandatory,

– 0 < [A]i,i < 1 ⇐⇒ ai is supplementary,

– [A]i,j = 1 ⇐⇒ ai ≺ aj ,

– [A]i,j = 0 ⇐⇒ ai ∼ aj ,

– 0 < [A]i,j < 1 ⇐⇒ ai 1 aj ,

54 3 METHODS

• A(O) = A as modified by the algorithm,

• S (aj) :=
{
σ
(j)
1 , . . . , σ

(j)
ρj

}
= skills required to aj , S (aj) ⊆ S,

• [W]j,k = wj,k = L (aj, σk) = the minimum level of σk required to aj ,

• [M]i,j = the maximal (allowed) ratio of the working time of ei allocated to aj ,

• [O]j,i = the (proposed) working time ratio of ei allocated to aj ,

• aeij := [O]j,i,

• Aj :=
m∑
i=1

aeij = the total effort allocated to aj (in terms of human resources),

• εj :=
{
ei ∈ E : 0 < aeij

}
,

• ewi :=
n∑
j=1

[O]j,i ≤ emaxwi :=
n∑
j=1

[M]i,j ,

• adurj (O) = duration of aj , see Eq. (11),

• adurj (O) = adjusted duration of aj , see Eq. (12),

• aendj (O) = astartj (O) + adurj (O),

• astartj (O)min = minimal starting time of aj , see Eq. (13),

• astartj (O) = astartj (O)ALG = the scheduled starting time, SST, decided by the

algorithm,

• SST = (astart1 (O)ALG , ... , a
start
n (O)ALG), see Eq. (18),

• TPT = pdur = total project duration, see Eq. (14),

• TPCsyn = TPC = pcost = total project cost with synergies, see Eq. (19),

• TPCnosyn = total project cost without synergies, see Eq. (20),

• eworki (τ) := how much ei is allocated to the project at time τ , see Eq. (23),

3.2 PROPOSED HYBRID GENETIC ALGORITHM 55

• Si = score values of ai,

• pi,j = probability of the dependency ai 1 aj ,

• TPS = total project score, see Eq. (25),

• overwork(τ) = general overwork at time τ , see Eq. (27),

• pover = the total overwork of the project, see Eq. (28),

• z = the composite objective function to be minimized, see Eq. (35).

3.2 Proposed Hybrid Genetic Algorithm

Since SPSP is NP-hard (Xiao et al., 2013), which is a special case of synergy-based

SPSP, the SSPSP is also NP-hard. There are exact methods that can solve small

instances of SPSP to optimality (Vega-Velázquez et al., 2018) (see Section 2.3.4);

however, these methods are not practical for larger instances, and their resolution

requires other kinds of techniques such as metaheuristics (Yang, 2010). Thus, a

metaheuristic method of solving it is proposed. This section provides an overview

of this algorithm.

Although most variables of the objective (target) function (i.e., dedications to activ-

ities and the scheduled start time of activities, referred to as SST) are continuous

(with real variables), the model also contains several binary variables, namely, de-

cisions regarding task/dependency exclusion/inclusion. Therefore, a mixed-integer

genetic algorithm is used to seek a good feasible solution. All of the default op-

erators (i.e., crossover, mutation, and selection) of the genetic algorithm must be

modified because an excluded task has no dependency, duration, or cost demands.

The results of the genetic algorithm are refined using a Nelder-Mead minimization

(NMM) method. The NMM optimization function continues the optimization after

56 3 METHODS

the termination of the GA. The NMM function can refine only the real values such

as the values of the output matrix (O) and the scheduled start time (SST) of activ-

ities. The MATLAB Global Optimization toolbox is used to implement the hybrid

genetic algorithm; however, the standard mutation, crossover and selection function

as well as the hyperparameters must be modified (see Section 3.2.1). I hereinafter

refer to this hybrid genetic algorithm as the synergy-based agile project scheduling

algorithm (SynAPS).

Generally, the sets of excluded/included flexible task occurrences and flexible task

dependencies (see the logic domain (A)), the values of allocations (see the output

domain (O)) and the scheduled start time (SST) for all tasks must be specified.

After the final specification, the resulting matrix A′ contains only values {0, 1},

where [A]ii = 1 ([A]ii = 0) means that task ai will be included in (excluded from)

the project. Nevertheless, if a task is excluded from the project, the dependencies of

the (excluded) tasks and all the (time/cost/resource) requirements are also excluded

from the project.

3.2.1 Parameters of the SynAPS

Fitness function: In our case, the fitness function is a composite function (see

Eq. (35)). We seek the elements of the output matrix (O ∈ Rn×m
+), the decision

results of the flexible dependencies and supplementary task occurrences that are

represented in the final logic domain A′ ∈ {0, 1}n×n, and the scheduled start time

for all activities such that the resource constraint can be satisfied. It is assumed that

a potential solution to a problem may be represented as a set of parameters/values.

These values (known as genes) are joined together to form a vector (referred to

as a chromosome, shown in Fig. 10). In genetic terminology, the set of values

represented by a particular chromosome is referred to as an individual.

3.2 PROPOSED HYBRID GENETIC ALGORITHM 57

FIGURE 10. Structure of a chromosome
(Source: own figure)

If u is the number of uncertain tasks + dependencies,m is the number of employees,

and n is the number of activities, then a chromosome vector with u + (m + 1)n

elements can be constructed. For ease of use, the first part of the chromosome is

the decision part, and the numbers are binary values. The second part is the output,

which codes the output matrix row by row. The last part is the scheduling part,

where the values are also real and positive. The fitness of an individual depends on

its chromosome and is evaluated by the fitness function. During the reproductive

phase, individuals are selected from the population and are recombined, producing

offspring that compose the next generation. Parents are then randomly selected from

the population using a scheme that favors fitter individuals. After two parents have

been selected, their chromosomes are recombined, typically using the mechanisms

of crossover and mutation. The latter is usually applied to some individuals to

guarantee population diversity.

Population: In the first step, a number of possible solutions must be generated.

First, the elements of the logic domain A′ will be generated because if [A′]ii = 0,

then [O]ij:=1,2..,m := 0, i.e., activity ai ∈ A will be excluded from the project;

therefore, the excluded task has no time, cost or resource requirements. Since an

excluded task has no dependencies, [A′]ji = [A′]ij := 0 if [A′]ii = 0. I denoted the

initial population by P0 and the population of the Gth generation by PG.

58 3 METHODS

Selection mechanism: One of the main operators in a genetic algorithm is the se-

lection operator. First, feasible solutions must be selected by a tournament. Because

we usually have many feasible solutions, we use a tournament selection mechanism.

In this case, each parent is determined by choosing a random number of tournament

players and then choosing the best individual from that set to be a parent. The tour-

nament size must be at least 2. In our case, I set the tournament size to 10. The set

of selected chromosomes in the Gth generation was denoted by SG.

Elite count: This is a positive integer specifying how many individuals in the cur-

rent generation are guaranteed to survive to the next generation. It was set to 5% in

this work, which means there were 5% so-called elite children in every generation.

Crossover fraction: The crossover fraction specifies the fraction of each population

(other than elite children) that consists of crossover children. A crossover fraction

of 1 means that all of the children other than elite individuals are crossover children,

while a crossover fraction of 0 means that all of the children are mutation children.

The best results were obtained when this parameter was set to 0.8. This means

that 80% of the selected children (excluding elite children) were parents used in the

crossover function (so-called crossover children) and 20% of the selected children

(excluding elite children) were used in the mutation function (so-called mutation

children).

Crossover operator: The (fractionated) selected chromosomes were used. Since

a chromosome has a binary or decision part and two continuous parts, two kinds

of crossover functions must be combined. For the continuous parts, the arithmetic

crossover function is used. Such a function creates children that are the weighted

arithmetic mean of the two parents (i.e., depending on the fitness function). For

the continuous part (called recombined), this crossover function can be very effect-

ive. At the same time, this crossover mechanism cannot be used for the binary or

decision parts of the chromosome. In this case, a uniform crossover function is

3.2 PROPOSED HYBRID GENETIC ALGORITHM 59

used. However, the parents may be infeasible; thus, here I assume that the feas-

ible parents’ genes are 10 times as dominant. In other words, a gene is ten times

more likely to originate from feasible parents than from infeasible parents.39 After

the set of children chromosomes has been determined, the requirements of the ex-

cluded tasks and their task dependencies must be eliminated (set to 0). The set of

recombined children chromosomes in the Gth generation was denoted by CG(SG).

Mutation operator: The mutation is a two-step process where the first step is gen-

eral and is carried out for all parts of the chromosome. In the first step, the algorithm

selects a fraction of the vector entries of an individual for mutation where each entry

has a probability rate of being mutated. According to the results of the settings, this

rate is specified as 0.01. In the second step, although the same mechanism is used

when the mutation operator is implemented, the two parts of the chromosomes must

be distinguished. In this case, the adaptive feasible mutation function is used. In

the presence of constraints, directions that are adaptive with respect to the preced-

ing successful or unsuccessful generation are randomly generated. The mutation

operator chooses a direction and step length that satisfy the bounds and linear con-

straints. After the mutation operator is used, the requirements of the excluded tasks

and their task dependencies must be eliminated (set to 0). The set of mutated chro-

mosomes in the Gth generation was denoted by MG(SG).

Next generation: The mutated and crossover individuals are considered together

with the old population, and the best N = 100 individuals are selected for the next

generation.

Stopping criteria: A genetic algorithm terminates if we reach the maximum num-

ber of generations (set at 100 in this case) or if the average relative change in the best

39 If all the parents are feasible or all the parents are infeasible, the standard uniform crossover
function is used.

60 3 METHODS

fitness function value over generations is less than or equal to the function tolerance

(1E − 8).

3.3 Proposed Simulation Framework

The purpose of the simulation is to determine the parameter(s) that influence(s) the

(changes in) project duration and the cost demands of the project while considering

the synergies between the employees. The proposed, so-called synergy-based agile

simulation framework (SynASF) can be separated into two stages:

• Stage 1: Specifying problem sets,

• Stage 2: Solving problems.

3.3.1 Specifying Problem Sets

A problem set contains the following:

(1) SMMs that numerically represent the synergy-based software scheduling
problem,

(2) Minimum (δmin) and maximum (δmax) values of the possible synergies
between two members,40

(3) Constant ratios (see Section 3.3.1.2).

3.3.1.1 Specification of the SMM

To determine the SMM matrices, first, the logic and skill domains of the SMM

matrices are generated by the iMOPSE project generator (Myszkowski et al., 2019).

The iMOPSE generator randomly selects which skills are required for the different

tasks. The levels of these skills (skilled work elements; [W]j,k) are determined

40 In the simulation, the average (pairwise) synergy between two employees is AvgSyn :=
(δmin+δmax)/2. Note that unlike Y ε, we already know the elements of the O domain when defining
AvgSyn, thus AvgSyn measures synergy more accurately than Y ε does.

3.3 PROPOSED SIMULATION FRAMEWORK 61

by Monte Carlo simulation (Chan, 2013) in such a way that the resulting project

scenarios are still feasible at the maximum of skilled work elements.41

The aim of the selection and the generation of the initial project plans is to meet the

expectations for (IT) software project plans to the greatest extent possible, particu-

larly the features of agile projects. Therefore, the following selection criteria (CR)

were defined as follows:

CR1: Since Tavares et al. (1999) and Vanhoucke (2012) showed that software

projects usually contain more parallel tasks, in the case of selected project

structures, the number of parallel tasks should be greater than the number

of serial tasks.42 Nevertheless, several agile methods such as the KANBAN

and SCRUMBAN methods limit the number of parallel work-in-progress

(WIP) tasks and allow only 3 − 5 WIP tasks. Therefore, in the simulation,

the number of WIP tasks must be lower than 5.

CR2: Projects are usually separated into smaller autonomous subprojects (so-called

sprints; see, e.g., Dingsøyr et al. 2012) that should be completed within 2−5

weeks; therefore, the number of tasks is limited and should not be greater

than 50.

Therefore, the number of tasks were 30 and 50 (Na), and the number of employers

(resources) was 10. The other parameters were selected as the default values with a

minimal duration=1, maximal duration=8, minimal resource skill type=1, and max-

imal resource skill type=9 (the number of skills is Nsk). Ten projects that fulfilled

criteria CR1-CR2 were selected from the generated project networks.

41 Note that unit salaries are used in the calculations.
42 Following the simulations of Tavares et al. (1999), i2 = (m− 1)/(n− 1) ∈ [0.2, 0.3], where m

is the number of stages in a topological ordered network and n is the number of tasks. i2 = 1 if all
of the tasks are completed in a serial manner, and i2 = 0 if all of the tasks are completed in parallel.

62 3 METHODS

Nevertheless, these project networks cannot be used directly. Neither known pro-

ject generators – such as ProGen (Kolisch and Sprecher, 1997), RanGen I (De-

meulemeester et al., 2003), and II (Vanhoucke et al., 2008) or iMOPSE (Myszkowski

et al., 2019) – nor open project data sources – such as PSPLIB (Kolisch and Sprecher,

1997) and MMLIB (Peteghem and Vanhoucke, 2014) – distinguish mandatory and

supplementary tasks or consider strict and flexible dependencies. Thus, there are no

score values linked to task completion or task dependencies. Therefore, to simulate

project flexibility, ff × 100% (where ff := {0.10, 0.15, 0.20}) of the matrix val-

ues are reduced from 1 to a lower value in the range of [0.5, 1.0], causing them to

represent either uncertain tasks or flexible dependencies.

The original database does not contain synergies between the employees, which

therefore must be specified in order to follow a sociometric structure (see Fig. 13.

The default value of synergy between two employees is 1 and is known as neutral

synergy. For given sociometric structures (see Fig. 13 in Section 4.1), the synergy

values (weights of synergy networks) can be either greater or less than 1. Values

δmin := {−0.3,−0.1, ..., 0.2}, δmax := δmin + 0.1 represent the minimum and max-

imum differences between the generated and neutral synergies, respectively.

3.3.1.2 Calculation of Constraints

After SMM matrices are generated the constraints are calculated. The ratio of

the project score is Cs% = Cs−TPSmin

TPSmax−TPSmin
:= {0.6, 0.8., 1.0}. In addition to the

score constraints, both time (Ct := {1.00, 1.25, 1.50} · TPTmin) and cost (Cc :=

{1.00, 1.25, 1.50} · TPCmin) are calculated. As a result, a set of nCt% × nCc% ×

nCs% × nff% × nδmax × nn × nproj = 35 × 2 × 144 = 69, 984 SMM matrices and

constraints are generated, where nCt%, nCc%, nCs% are the numbers of time, cost and

score constraints, respectively; nff% is the number of flexible parameters; nδmax is

the number of δmax values; nn is the number of task numbers (30, 50); and nproj is

the number of selected project structures.

3.3 PROPOSED SIMULATION FRAMEWORK 63

3.3.2 Solving Problems

In stage 2, the problem sets are solved by the SynAPS, where the objective (tar-

get) function is Eq. (35). Given this complex target function, in addition to the

maximization of the project scores, the project duration, project cost, and thus the

resource demands must be reduced simultaneously. The project durations (TPT),

project costs (TPC), and total project scores (TPS) are calculated for every prob-

lem set both considering and ignoring synergies, obtaining TPXsyn and TPXnosyn,

respectively. The differences between TPXnosyn and TPXsyn are calculated, and the

cost differences observed in the results are studied. In this study, both positive (or

favorable) and negative (or unfavorable) synergy effects are considered. A positive

∆TPC=TPCnosyn-TPCsyn means that the positive synergy effect is greater than the

negative synergy effect.

CHAPTER 4

Results and Discussion

This section provides an answer to the research questions (see RQs in Section 1.2),

then formulates the research theses of the dissertation.

4.1 Answering the Research Questions

RQ1: Is it possible to determine a scheduling problem for traditional and flexible
project planning environments that considers not only the skills of human
resources but also the synergies between them?

In line with the RA1 (see Section 2.6), the classical software project scheduling

problem (SPSP) was extended by considering flexible task dependencies and pair-

wise synergies between resources (see Section 3.1). The so-called synergy-based

software project scheduling problem (SSPSP) thus defined reflects the APM ap-

proach (see Section 2.1.5) widely used in software development practice, and con-

sequently outlines a more realistic planning problem than the classical SPSP.

RQ2: Is it possible to develop a network- or matrix-based project scheduling model
that takes into account flexible project plans, the skills of human resources
as well as the synergies between them?

To model both classical and synergy-based SPSPs, I proposed an extended form of

the multi-domain matrix (MDM) according to the RA2 (see Section 2.6). The new,

so-called synergy-based multi-domain matrix (SMM) contains multiple intercon-

nected domains that model the flexible logical structure of the project, the amount

of (skilled) work to be performed within the project, the skills of human resources
64

4.1 ANSWERING THE RESEARCH QUESTIONS 65

and the positive and negative pairwise synergies between them, as well as the max-

imum resource assignments (see Fig. 9 in Section 3.1.1).

RQ3: Is there a(n optimal) solution for scheduling a flexible software project plan
that considers the synergies between resources?

Using the proposed simulation framework (SynASF) (see Section 3.3) and the pro-

posed hybrid genetic algorithm (SynAPS) (see Section 3.2), 69, 984 classical and

synergy-based SPSPs were simulated and solved with respect to the given objective

function (see Eq. (35) in Section 3.1.5) and given constraints (see C1-C8 in Sec-

tion 3.1.4). For all optimization problems, SynAPS found a feasible solution. Not

only does this verify the RA3 (see Section 2.6), but it also shows that by apply-

ing the proposed multi-domain model (SMM) and the SynAPS, both classical and

synergy-based SPSPs can be solved even in a flexible project planning environment.

RQ4: Is it possible to develop a simulation framework to examine the impact of the
synergies between resources, the structures of synergy networks, the skills
of human resources as well as the size, flexibility, and constraints of the
project on the implementation of the project schedule?

In order to decide whether the proposed simulation framework is suitable for per-

forming the examination referred to in the RQ4, I analyze the optimization results

of 69, 984 classical and synergy-based SPSPs simulated by the SynASF (see Section

3.3). The analysis is based on the research model presented in Fig. 11.43

This model is focused on three cases: the case of SPSP, in which synergies are ig-

nored (M1), the case of SSPSP, in which synergies considered (M2), and the differ-

ence between these two approaches (M3). Since the cost of the project is a function

of the duration and the employees’ salary, in the main text, TPCnosyn, TPCsyn

43 Note that contrary to Table 7, only one structural parameter is considered in Fig. 11. Reducing
the model is justified by the high correlations between the degree centrality (DC) and other structural
parameters (see Table A.1 in Appendix A.1). DC is the average of the node-level centrality values
calculated by dividing the actual degree of a node by the number of nodes reduced by 1.

66 4 RESULTS AND DISCUSSION

FIGURE 11. Research model
(Source: own figure)

and ∆TPC are considered as the only dependent variables. To derive a complete

picture of the operation of the proposed method, I also perform calculations for the

project durations in the Appendices (see Fig. A.1 in Appendix A.2).44 During the

analysis of the optimization results, I employ the regression tree ensemble model of

the MATLAB Regression Learner App (MathWorks, 2019b). For both the main (see

Fig. 11) and the additional (see Fig. A.1 in Appendix A.2) models, 10-fold cross-

validation was used, and the hyperparameters were tuned by Bayesian optimization.

Fig. 12 shows the relative importance of the independent variables (predictors) for

all three cases.45

44 Note that the scores for the project scenarios are the same for classical and synergy-based
SPSPs, therefore the impact of independent variables on TPS is not examined separately.

45 The relative importance is calculated using the predictorImportance MATLAB function (see
MathWorks, 2019a). The full details of the optimization processes can be found in Appendix A.3.

4.1 ANSWERING THE RESEARCH QUESTIONS 67

FIGURE 12. Relative importance of the various predictors
(Source: own figure)

In case of the SPSP (see Fig. 12 – M1), the size of the project (Na) and the various

skills of employees (Nsk) are the main factors impacting project costs; however, if

synergies between two employees are considered (see Fig. 12 – M2), the principal

effect is due to the average pairwise synergy (AvgSyn) itself. In this case, changes

in the time, score and cost constraints (Ct%, Cs%, Cc%) and flexibility (ff) also in-

fluence the project cost, while the previously important size (Na) and skills (Nsk),

as well as degree centrality (DC), have only a small impact on the cost. Model 3

specifies the parameters that explain the cost differences of these two approaches.

According to this model, the project size (Na) has the highest explanatory power

of 47%, followed by the average synergy (AvgSyn – 35%) and the structural para-

meter (CD – 16%). These results have two main implications. First, the synergy-

related parameters have a very strong effect on projects’ costs even though, based

on the current parameterization of the model, the interdependence of two employees

can only change their performance to a relatively small extent (see Section 3.3.1.1).

Second, the high impact of the structural parameter (DC) appears to be consistent

with the relevant literature (see Section 2.5).

To determine, which structures of synergy networks reduce the project cost the

most, I examine how ∆TPC (see Fig. 11 – M3) is influenced by the sociometric

structure and how their relation changes based on the structural parameter (DC; the

respective results are shown in shades of gray) or how project flexibility (ff – Case

1− 3) varies (see Fig. 13).

68 4 RESULTS AND DISCUSSION

FIGURE 13. Effect of sociometric structures on the project cost
(Source: own figure)

Fig. 13 shows that structures with a low degree centrality (DC) generally lead to a

greater reduction in the project cost; however, the veracity of this statement depends

on the topology of the sociometric network. Although I observe that the flexibility

of the project (ff) has a negligible effect on ∆TPC (see Fig. 12), I find that the

chain and full graph networks are highly sensitive even to small changes of this

parameter (see Fig. 13 Case 1-3). In some cases involving these topologies, the

TPCsyn is greater than the TPCnosyn, resulting in a negative ∆TPC. Furthermore, the

most decentralized topology (the full graph) leads to the worst results because of

its high sensitivity to negative synergies. On the one hand, these findings are con-

trary to that of Sparrowe et al. (2001), since, in their model, decentralized networks

(such as circle and full graph networks) are unable to reduce costs by an amount

greater than that of the centralized networks (such as star and sociometric star net-

works). On the other hand, it is in line with the empirical findings of Sanchez et al.

(2017), who observed that the formal power of the project manager as well as the

smaller, less dispersed teams have a positive impact on the outcome of projects (see

Section 2.4). The results presented in Fig. 13 are also in accordance with Shaw

4.2 RESEARCH THESES 69

(1964), since I found that teams with decentralized networks took less time to fin-

ish complex tasks than groups with centralized networks. However, while synergy

can be proxied by theories like Belbin’s on the effective team roles, or findings on

the relation between teamwork effectiveness and the hierarchy or communication

(see Sections 2.4-2.5), note that, due to the complex nature of the synergy, the res-

ults of the simulation are difficult to compare with the empirical results presented

above (see Section 2.5). Given the simulation results, the RA4 (see Section 2.6) is

accepted.

4.2 Research Theses

Based on the presented results (see Section 4.1) – and their validity (see Chapter

6) –, one research thesis is formulated for each of the four research questions (see

RQs in Section 1.2) and assumptions (see RAs in Section 2.6). The four theses

(RTs) of the dissertation are the following:

RT1: The proposed synergy-based software scheduling problem (SSPSP) extends
the classical software scheduling problem (SPSP) to take into account the
flexibility of project plans, as well as the pairwise synergies between re-
sources.

RT2: The proposed synergy-based multi-domain matrix (SMM) contains multiple
interconnected domains that model the flexible logical structure of the pro-
ject, the amount of (skilled) work to be performed within the project, the
skills of human resources and the positive and negative pairwise synergies
between them, as well as the maximum resource assignments. The pro-
posed matrix is able to model all solutions of both the classical (SPSP) and
the synergy-based (SSPSP) software scheduling problems.

RT3: The proposed synergy-based agile project scheduling algorithm (SynAPS)
finds a feasible solution for both the classical (SPSP) and the synergy-based
(SSPSP) software project scheduling problems with respect to the given ob-
jective function (that minimizes the duration and cost of the project while
simultaneously maximizing its score) and given constraints (in relation to
the duration, cost, resource, and score of the project).

70 4 RESULTS AND DISCUSSION

RT4: The proposed synergy-based agile simulation framework (SynASF) is suit-
able for examining the impact of pairwise synergies between resources,
synergy structures, skills as well as the size, flexibility, and constraints of
the project on the implementation of project scheduling. According to the
synergy-based agile simulation framework (SynASF):

RT4.1: The costs of projects are most sensitive to the pairwise synergies of
human resources.

RT4.2: The impact of pairwise synergies on project costs is mainly influ-
enced by the size of the project, the average pairwise synergy, and
the structural parameter (degree centrality) of the synergy network.

RT4.3: Synergy networks with low degree centrality lead to a greater reduc-
tion in the project cost; however, the impact of synergies is also in-
fluenced by the topology of networks. The highest costs are obtained
by the synergy networks with the most decentralized topology (full
graph) because of their high sensitivity to negative synergies.

CHAPTER 5

Practical example

This chapter presents an empirical example for defining and solving a real-life soft-

ware project scheduling problem, both in a classical (SPSP) and in a synergy-based

(SSPSP) context. The source of the data is a multinational automotive manufac-

turing company that is a market leader in automotive safety, automated driving,

and electric mobility.46 This company develops embedded software for automotive

equipment, and in order to fulfill rapidly changing customer needs, places great em-

phasis on applying an APM approach. The practical example is based on a schedul-

ing problem of a software development sprint contained in a product development

project. It was selected based on two criteria. On the one hand, the selected sprint

must be a good representative of other similar sprints managed by the company, not

only in terms of its logical structure but also in terms of the proportion of workloads.

On the other hand, it should rely as much as possible on teamwork, so in addition

to generalizability, I also took into account the number of team members planned to

be involved in the implementation.

In the following, I will first describe the planning problem of the selected sprint in

detail. Then by using SMM matrices (see Fig. 9 in Section 3.1.1), this problem is

defined as a classical (SPSP) and as a synergy-based (SSPSP) project scheduling

problem. Finally, after both problems are solved by the proposed SynAPS (see

Section 3.2), results are discussed.

46 The company’s name is withheld at their request. The anonymized data was collected by Péter
Harta, who made it available to me. Some of this data was used in Harta (2021).

71

72 5 PRACTICAL EXAMPLE

5.1 Problem Definition

The studied problem is a typical example for the software project scheduling prob-

lem defined in Section 2.3. As a combination of scheduling and human resource

allocation, the goal was to define a schedule that meets both pre-defined time and

cost constraints. The start date of the sprint was scheduled for October 16, 2020 and

it has to be implemented by November 8, 2021.47 In other words, the sprint has to

be completed in 268 business days. In addition, the planned budget may not exceed

1960 (measured in an employee’s daily salary).48

The logical structure of the studied software development sprint is defined by the

company’s product development template. It contains 9 mandatory and 3 supple-

mentary tasks, which were scheduled along the following logic. The sprint begins

with the translation of customer requirements (a1), followed by the parallel de-

velopment of function models related to the communication (a3) and steering (a4)

systems. The development of another two functional models in connection with

the brake (a2) and engine systems (a5) are scheduled as supplementary tasks. As

a result of these development tasks, the codes related to each functional area and

their documents are completed. Once the flash loader (a6) is also ready, codes are

integrated and uploaded to the developed device (a7). These tasks are followed by

the integration test (a8), then by the labor (a9) and road (a10) tests performed in

parallel. Finally, after the quality control of the implementation process (a11), the

sprint is closed by the preparation of the release request document and the handover

of the software (a12). These tasks and their relations are described in Table 8.

The examined company manages its projects in a multi-project environment. A

total of 20 employees are available for implementation, of which 16 employees can

47 Data related to task and project durations as well as to implementation constraints were linearly
transformed at the company’s request.

48 Since salaries are considered confidential data, unit salaries are used in the calculations.

5.2 SPECIFICATION OF THE SMM 73

TABLE 8. Tasks of the software development sprint

(Source: own table)

Notation Name Probability Workload Direct
(in 8 hours) Predecessors

a1 Translation of requirements 1.0 20
a2 Function model 1 1.0 80 a1
a3 Function model 2 0.6 110 a1
a4 Function model 3 1.0 40 a1
a5 Function model 4 0.8 30 a1
a6 Flash loader development 1.0 8 a2, a3, a4, a5
a7 Software integration 1.0 4 a2, a3, a4, a5
a8 Integration test 1.0 5 a6, a7
a9 Laboratory test 1.0 15 a8
a10 Road test 0.6 10 a8
a11 Quality control 1.0 4 a9, a10
a12 Software handover 1.0 6 a11

be involved in the project full-time (8 hours per business day) and 4 employees

part-time (4 hours per business day). In addition to the data originally considered

during scheduling, Belbin’s team roles (Belbin, 1981, 2010) of employees are also

collected (see Table 6 in Section 2.4.2.1). Information on available employees is

found in Table 9.

5.2 Specification of the SMM

Synergy Domain (Y): To define synergy domain, Belbin’s team role test (Belbin,

1981, 2010) is applied (see Section 2.4.2.1). In line with Belbin’s theory, I sought

to compose a high-functioning, heterogeneous team in terms of role. Positive pair-

wise synergies are assumed (1.3) between those employees that have different role

categories (thinking, action, social). If the role category of the two employees is the

same but their roles are different, I assume a moderately negative synergy (0.85). Fi-

nally, in the case of the same categories and roles, a lower synergy value is assumed

than in the previous case (0.7).49

49 In the case of the SPSP, all pairwise synergy values are 1. Note that in this example, SPSP
differs from SSPSP only in this domain.

74 5 PRACTICAL EXAMPLE

TABLE 9. Available employees

(Source: own table)

Notation Dedication Experience in... Belbin’s roles∗
(hours per BD‡) Category Role

e1 8 σ2, σ3, σ4, σ5, σ11, σ12 Action SH
e2 4 σ2, σ3, σ4, σ5 Social SH, CF
e3 8 σ2, σ3, σ4, σ5 Social SP
e4 8 σ2, σ6, σ11, σ12 Action TW
e5 8 σ1, σ2, σ6, σ7, σ8 Social CF
e6 8 σ3, σ6, σ11 Action SH
e7 8 σ2, σ3, σ4, σ6 Thinking PL
e8 4 σ1, σ2, σ4, σ7, σ8, σ12 Action SH
e9 8 σ3, σ4, σ9 Action SP
e10 8 σ2, σ5, σ9 Social SP
e11 8 σ3, σ10, σ11 Social SP
e12 8 σ2, σ3, σ4, σ5, σ6 Social SP
e13 8 σ10, σ11 Social SP
e14 8 σ1, σ2, σ3, σ4 Action SH
e15 8 σ2, σ3, σ4, σ5 Action ME
e16 4 σ1, σ4, σ5 Action PL
e17 8 σ2, σ3, σ5, σ7, σ8, σ9, σ10 Social SP
e18 8 σ2, σ3, σ5, σ7, σ8, σ9, σ10 Action SH
e19 4 σ2, σ3, σ6 Action CO
e20 8 σ2, σ4, σ6 Action ME

∗This information was not considered in the original scheduling problem.
‡BD: business day.

Experience (formerly Skill) Domain (S): As the skills of employees are con-

sidered confidential, I define this domain based on the experience of the employ-

ees. To this end, I examined which employees worked in which activities and how

many times in the last 3 years. The experience of employees is 1 if their particip-

ation number deviates from the average by no more than half the standard devi-

ation. Above/below these limits of half the standard deviation, experience values

are 1.15 and 0.85, respectively. With a participation number one standard deviation

higher/lower than the average, the values of experience are 1.3 and 0.7, respectively.

Matching Domain (M): Of the 20 employees, 16 work full-time (a value of 1

means 8 hours per workday) and 4 employees work part-time (a value of 0.5 means

4 hours per workday) on the project.

5.3 RESULTS 75

Logic Domain (A): This domain contains the logical order in which the activities

are performed, as well as the probability of the activities being carried out.

Skilled Works Domain (W): This domain contains the workloads required by each

activity – measured in 8 hours. The SMM matrix of the SPSP is illustrated with Fig.

14.

5.3 Results

After both SPSP and SSPSP are solved by the proposed SynAPS, the TPT and

TPC values of the shortest project scenarios are compared. We distinguish cases in

which supplementary activities may have been dropped (TPS≤ TPSmax), and those

cases in which these activities had to be carried out (TPS = TPSmax). Results are

presented in Table 10.

TABLE 10. Comparison of the shortest project scenarios

(Source: own table)

Case∗ TPX SPSP SSPSP Difference Feasible‡?

I TPT 248.47 239.82 3.48% yes
TPC 1668.40 1599.10 4.15% yes

II TPT 288.95 284.60 1.51% no
TPC 3009.80 2901.90 3.58% no

∗I: TPS ≤ TPSmax, II: TPS = TPSmax
‡Constraints: time: 268, cost: 1960.

Based on Table 10, both the time and cost of feasible software development sprints

are lower when synergies are considered, however, the difference between the two

models’ results is not significant (Case I: 3.48% and 4.15%, Case II: 1.51% and

3.58%, respectively). Note that in projects implemented by real cross-functional

teams, ignoring synergies may have a much greater impact on the quality of project

plans. Scenarios that contain every supplementary task are infeasible under the

predetermined constraints.

76 5 PRACTICAL EXAMPLE

F
IG

U
R

E
14

.
SM

M
of

th
e

pr
ac

tic
al

ex
am

pl
e

(S
ou

rc
e:

ow
n

fig
ur

e)

CHAPTER 6

Threats to Validity

Internal validity threats in this work can occur due to the randomness of the results

obtained from the simulation and SynAPS, as well as a lack of treatment of several

variables such as synergy structures for the optimization. To avoid such a threat,

different actions were taken:

• First and foremost, the number of generations, elite count, crossover fraction,

mutation rate, and population size needed by SynAPS were carefully calibrated.

The chosen values were determined ensuring that further changes do not signific-

antly affect the results. Hyperparameters were then used where the convergence

was best.

• Similarly, the number of iterations required by the entire approach was calib-

rated. As described in detail in Section 3.2, further increases over 50 iterations

do not produce improvements in the applied fitness function; nevertheless, the

maximum iterations are specified to 100 (see Section 3.2).

• To avoid the effect of randomness on the results, GAs were executed 40 times,

and I verified that the obtained fitness function value at the last stage does not

change among the iterations.

• Last but not least, Nelder-Mead optimization was used to refine the continuous

part of the chromosome.

Regarding the external validity, the proposed approach and the obtained results can

be extended to non-IT project structures. I applied CR1-CR2 selection criterias

(see Section 3.3.1.1) to select project structures that are specific for the IT projects
77

78 6 THREATS TO VALIDITY

merely because flexible approaches are still only widely used in IT projects. How-

ever, with the proliferation of flexible approaches, this study may also be interesting

for projects with different structures.

Construct validity threats may be due to the simplifications of the software project

process. To mitigate this threat, all small social network structures were explored,

which can be reviewed in the literature. Software projects are generated by the

iMOPSE generator (Myszkowski et al., 2019). The selection criteria (see CR1 and

CR2 in Section 3.3.1.1) were then followed. Therefore, considering the available

literature regarding the structure of the IT projects, the generated project structure

characterizes the features of an IT project.

To improve the conclusion validity, the optimization results are analyzed by a highly

robust method, the so-called regression tree ensemble model of the MATLAB Re-

gression Learner App (MathWorks, 2019b). During the calculation, 10-fold cross-

validation was used, and hyperparameters were tuned by Bayesian optimization.50

In addition, large-scale simulation increases the validity of the conclusion.

50 The details of the optimization processes can be found in Appendix A.3.

CHAPTER 7

Summary and Conclusion

7.1 Summary

While cross-validation of solvers and other technical aspects of the software pro-

ject scheduling problem (SPSP) have been extensively explored in the literature,

significantly fewer studies consider the definition of the problem itself. This study

was focused on two possible approaches of extending the classical SPSP. First, a

general form of the SPSP assumes fixed logic plans; however, applying flexible de-

pendencies and using task priorities instead of fixed occurrences will result in more

flexible project plans consistent with the agile approach. Despite the existence of

agile project scheduling algorithms (see, e.g., Kosztyán, 2015), to date SPSP has

not yet been extended to incorporate this feature. Second, while software develop-

ment projects and particularly those that are software development projects using

the agile approach (Wysocki, 2011, 2019) place a greater emphasis on teamwork

than the traditional methods (Nerur et al., 2005), in SPSP, employees are regarded

as independent resources. This by definition assumes that the best (i.e., the most

skilled) workers will perform tasks within the shortest timespan and with the highest

quality; however, none of the extensions address the interdependence of resources.

In this dissertation, the classical SPSP was formulated in a flexible, multi-domain

model and it was extended with pairwise synergies that can influence the employ-

ees’ performance during project implementation. Using simulations based on the

new approach, I searched for project indicators that have the largest influence on

79

80 7 SUMMARY AND CONCLUSION

changes in project costs. The main results of the analysis were as follows. Based

on the proposed simple model, (1) the costs of projects are extremely sensitive to

the interdependencies of resources; (2) synergy networks with low degree centrality

significantly reduce the project costs, and (3) synergy networks with full graph to-

pology are most sensitive to unfavorable synergies (e.g., conflicts). Since the impact

of positive or negative pairwise synergies and the structure of sociometric networks

can also be modeled, the proposed method can be a novel element in risk analysis

tools, particularly in the context of human resources-critical projects. The research

questions (RQs) and assumptions (RAs), as well as the theses (RTs) formulated

for each are summarized in Table 11.

7.2 Conclusion

This section concludes the dissertation with a view to its contribution to the literat-

ure and practical implications.

7.2.1 Contribution to the Literature

While most of the software projects are managed in an agile framework (see, e.g.,

Wysocki 2011, 2019), the SPSP ignores the two main features of this approach: the

flexibility of planning and the complexity of teamwork. To make the SPSP more

realistic and practical, the present dissertation offers a solution to both shortcom-

ings. First, the SPSP was formulated in a multi-domain, matrix-based structure

that allows flexible project planning. Then, to model the effect of employee inter-

dependencies on the common performance and, consequently, on the outcome of

the project, the SPSP was extended with pairwise synergies. Since the dissertation

provides a general framework for modeling different sources of synergies – such

as the formal structure of the team, communication between team members, team

roles, and shared knowledge or experience –, it may prove suitable for bridging the

gap between human-centered and methodological research.

7.2 CONCLUSION 81

TABLE 11. Research questions, assumptions and theses
(Source: own table)

N* Description

RQ1 Is it possible to determine a scheduling problem for traditional and flexible project plan-
ning environments that considers not only the skills of human resources but also the syn-
ergies between them?

RA1 The classical software project scheduling problem can be extended by considering flexible
task dependencies and synergies between resources. (Verified)

RT1 The proposed synergy-based software scheduling problem (SSPSP) extends the classical
software scheduling problem (SPSP) to take into account the flexibility of project plans,
as well as the pairwise synergies between resources.

RQ2 Is it possible to develop a network- or matrix-based project scheduling model that takes
into account the flexibility of project plans, the skills of human resources as well as the
synergies between them?

RA2 The multi-domain matrix (MDM) can be specified to a flexible multi-domain matrix
whose interconnected domains model the flexible project plan, the skills of human re-
sources as well as the synergies between them. (Verified)

RT2 The proposed synergy-based multi-domain matrix (SMM) contains multiple interconnec-
ted domains that model the flexible logical structure of the project, the amount of (skilled)
work to be performed within the project, the skills of human resources and the positive
and negative pairwise synergies between them, as well as the maximum resource assign-
ments. The proposed matrix is able to model all solutions of both the classical (SPSP) and
the synergy-based (SSPSP) software scheduling problems.

RQ3 Is there a(n optimal) solution for scheduling a flexible software project plan that considers
the synergies between resources?

RA3 Using metaheuristic algorithms, it is possible to find a feasible solution to the project
scheduling problem that takes into account flexible task dependencies and synergies
between resources. (Verified)

RT3 The proposed synergy-based agile project scheduling algorithm (SynAPS) finds a feas-
ible solution for both the classical (SPSP) and the synergy-based (SSPSP) software pro-
ject scheduling problems with respect to the given objective function (that minimizes the
duration and cost of the project while simultaneously maximizing its score) and given
constraints (in relation to the duration, cost, resource, and score of the project).

RQ4 Is it possible to develop a simulation framework to examine the impact of the synergies
between resources, the structures of synergy networks, the skills of human resources as
well as the size, flexibility, and constraints of the project on the implementation of the
project schedule?

RA4 By supplementing existing or generated project databases with flexible task dependencies
and resource synergies, it is possible to create a simulation environment to examine the
impact of human resource synergies and skills, as well as project size, flexibility, and
constraints, on project feasibility. (Verified)

RT4 The proposed synergy-based agile simulation framework (SynASF) is suitable for ex-
amining the impact of pairwise synergies between resources, synergy structures, skills as
well as the size, flexibility, and constraints of the project on the implementation of pro-
ject scheduling. According to the synergy-based agile simulation framework (SynASF):
RT4.1: The costs of projects are most sensitive to the pairwise synergies of human re-
sources; RT4.2: The impact of pairwise synergies on project costs is mainly influenced by
the size of the project, the average pairwise synergy, and the structural parameter (degree
centrality) of the synergy network; RT4.3: Synergy networks with low degree centrality
lead to a greater reduction in the project cost; however, the impact of synergies is also
influenced by the topology of networks. The highest costs are obtained by the synergy
networks with the most decentralized topology (full graph) because of their high sensitiv-
ity to negative synergies.

*Notations: RQ: research question, RA: research assumption, RT: research thesis.

82 7 SUMMARY AND CONCLUSION

In order to facilitate the comparison of the proposed model with the literature (see

Table 3-5 in Section 2.3), a summary of its features is hereby presented. Like most

models presented in related studies, it was formulated based on Alba and Chicano

(2007) and Luna et al. (2014); however the new model has a matrix-based, multi-

domain structure and allows for the consideration of pairwise synergies of human

resources in scheduling and resource allocation. To address flexible planning and

employee interdependencies, the original model was complemented with five new

constraints (see C4-C8 in Section 3.1.4). The new model has a single composite

target function (see Eq. (35) in Section 3.1.5) that minimizes the duration and cost

of the project, while simultaneously maximizing its score. To find a feasible good

solution with respect to this target function and given constraints, a hybrid genetic

algorithm called SynAPS was proposed that combines a mixed-integer genetic al-

gorithm with the Nelder-Mead minimization method (see Section 3.2).

7.2.2 Practical Implications

As a planning and decision-supporting tool, the proposed method may be partic-

ularly beneficial for software development companies that adopt the agile project

management (APM) approach and already have the expertise and technical back-

ground to solve a complex software project scheduling problem (SPSP). In contrast

to other approaches found in the literature, the new multi-domain method supports

flexible project planning, and provides an opportunity to model employee interde-

pendencies by introducing the concept of pairwise synergies. As it is not limited

to one source of synergy, it can be used to model the impact of different synergy

sources – such as the formal structure of the team, communication between team

members, team roles, and shared knowledge or experience – on the implementation

of the project schedule, depending on the available data and the characteristics of

the projects managed by the company.

CHAPTER 8

Limitations and Future Research

To simplify the model, the performed simulations were based on only pairwise syn-

ergies; nevertheless, I believe that the importance of human resource interdepend-

encies may motivate researchers to explore this aspect in greater detail and test

presented statements in practice. The presented simple model disregards several

important human factors that could affect the results (e.g., employees may prefer

working in groups with a decentralized sociometric structure). In this work, I fo-

cused on single projects; however, such software projects are usually pursued in a

multi-project environment. Therefore, my next study will address the impacts of

synergy effects in software projects in a multi-project environment.

83

Bibliography

Ahuja, M. K., Galletta, D. F., and Carley, K. M. (2003). Individual centrality and

performance in virtual r&d groups: An empirical study. Management Science,

49(1):21–38.

Alba, E. and Chicano, J. F. (2007). Software project management with {GAs}.

Information Sciences, 177(11):2380–2401.

Allen, N. and West, M. (2005). Selecting for teamwork. The Blackwell handbook

of personnel selection, pages 476–494.

Almeida, B. F., Correia, I., and Saldanha-da Gama, F. (2016). Priority-based heur-

istics for the multi-skill resource constrained project scheduling problem. Expert

Systems with Applications, 57:91–103.

Alreffaee, T. R. and Alabajee, M. A.-A. (2020). Solving software project scheduling

problem using whale optimization algorithm. In IOP Conference Series: Mater-

ials Science and Engineering, volume 928, page 032084. IOP Publishing.

Andersen, E. S. (2006). Milestone planning—a different planning approach. In

PMI® Global Congress.

Andersen, E. S., Grude, K. V., and Haug, T. (2009). Goal directed project manage-

ment: effective techniques and strategies. Kogan Page Publishers.

Anop, S. and Aldaghi, S. (2010). Management of communication risks: Evid-

encefrom international projects case study. In International conference PM-05-

Advancing project management for the 21st century “Concepts, tools & tech-

niques for managing successful projects”, Heraklion, Crete, Greece.

Antill, J. and Woodhead, R. (1990). Critical Path Methods in Construction Practice.

Wiley-Interscience publication. Wiley.

84

BIBLIOGRAPHY 85

Antoniol, G., Di Penta, M., and Harman, M. (2004). Search-based techniques for

optimizing software project resource allocation. In Genetic and Evolutionary

Computation Conference, pages 1425–1426. Springer.

Archibald, R. (2003). Managing High-Technology Programs and Projects. Wiley.

Artigues, C., Demassey, S., and Neron, E. (2008). Resource-constrained project

scheduling. Wiley Online Library.

Atkinson, R. (1999). Project management: cost, time and quality, two best guesses

and a phenomenon, its time to accept other success criteria. International journal

of project management, 17(6):337–342.

Bannerman, P. L. and Thorogood, A. (2012). Celebrating it projects success: a

multi-domain analysis. In 2012 45th Hawaii International Conference on System

Sciences, pages 4874–4883. IEEE.

Barry, B. and Stewart, G. L. (1997). Composition, process, and performance in

self-managed groups: the role of personality. Journal of Applied Psychology,

82(6):62–78.

Belbin, R. (1981). Management Teams: Why They Succeed Or Fail. Elsevier Sci-

ence & Technology Books.

Belbin, R. (1993). Roles at work: a strategy for human resource management.

Belbin, R. (2010). Management Teams: Why They Succeed Or Fail. Butterworth-

Heinemann.

Belbin, R. (2014). Method, reliability & validity, statistics & research: A compre-

hensive review of belbin team roles. Belbin UK, pages 1–26.

Bell, S. T. (2007). Deep-level composition variables as predictors of team perform-

ance: a meta-analysis. Journal of applied psychology, 92(3):595.

Benington, H. D. (1983). Production of large computer programs. Annals of the

History of Computing, 5(4):350–361.

Boehm, B. and Turner, R. (2005). Management challenges to implementing agile

processes in traditional development organizations. IEEE software, 22(5):30–39.

86 BIBLIOGRAPHY

Boehm, B. W., Clark, Horowitz, Brown, Reifer, Chulani, Madachy, R., and Steece,

B. (2000). Software Cost Estimation with Cocomo II with Cdrom. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 1st edition.

Branco, D. T. M. C., de Oliveira, E. C. C., Galvão, L., Prikladnicki, R., and Conte,

T. (2015). An empirical study about the influence of project manager personality

in software project effort. In ICEIS (2), pages 102–113.

Brennan, M. (1968). Pert and cpm: a selected bibliography. Council of Planning

Librarians.

Brown, C. (2020). Networks and Economic Behavior: Theory and Experiments.

PhD thesis, The Florida State University.

Browning, T. R. (2014). Managing complex project process models with a pro-

cess architecture framework. International Journal of Project Management,

32(2):229–241.

Callahan, M. T., Quackenbush, D. G., and Rowings, J. E. (1992). Construction

project scheduling.

Campion, M. A., Campion, J. E., and Hudson Jr, J. P. (1994). Structured interview-

ing: A note on incremental validity and alternative question types. Journal of

Applied Psychology, 79(6):998.

Carbonell, P. and Rodríguez Escudero, A. I. (2019). The dark side of team social

cohesion in npd team boundary spanning. Journal of Product Innovation Man-

agement, 36(2):149–171.

Chan, W. K. V. (2013). Theory and applications of Monte Carlo simulations. BoD–

Books on Demand.

Chang, C. K., Christensen, M. J., and Zhang, T. (2001). Genetic algorithms for

project management. Annals of Software Engineering, 11(1):107–139.

Chang, C. K., Jiang, H.-y., Di, Y., Zhu, D., and Ge, Y. (2008). Time-line based

model for software project scheduling with genetic algorithms. Inf. Softw. Tech-

nol., 50(11):1142–1154.

BIBLIOGRAPHY 87

Chen, C.-H., Ling, S. F., and Chen, W. (2003). Project scheduling for collaborative

product development using {DSM}. International Journal of Project Manage-

ment, 21(4):291–299.

Chen, T. R., Shore, D. B., Zaccaro, S. J., Dalal, R. S., Tetrick, L. E., and Gorab,

A. K. (2014). An organizational psychology perspective to examining computer

security incident response teams. IEEE Security & Privacy, 12(5):61–67.

Chen, W.-N. and Zhang, J. (2013). Ant colony optimization for software project

scheduling and staffing with an event-based scheduler. IEEE Transactions on

Software Engineering, 39(1):1–17.

Cheng, H. and Chu, X. (2012). Task assignment with multiskilled employees and

multiple modes for product development projects. The International Journal of

Advanced Manufacturing Technology, 61(1):391–403.

Cheng, J., Ji, J., Guo, Y.-n., and Ji, J. (2019). Dynamic multiobjective software pro-

ject scheduling optimization method based on firework algorithm. Mathematical

Problems in Engineering, 2019.

Chicano, F., Cervantes, A., Luna, F., and Recio, G. (2012). A novel multiobject-

ive formulation of the robust software project scheduling problem. In European

Conference on the Applications of Evolutionary Computation, pages 497–507.

Springer.

Chicano, F., Luna, F., Nebro, A. J., and Alba, E. (2011). Using multi-objective me-

taheuristics to solve the software project scheduling problem. In Proceedings of

the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO

’11, pages 1915–1922, New York, NY, USA. ACM.

Chiocchio, F., Kelloway, E. K., and Hobbs, B. (2015). The psychology and man-

agement of project teams. Oxford University Press.

Cho, S.-H. and Eppinger, S. D. (2005). A simulation-based process model for man-

aging complex design projects. IEEE Transactions on engineering management,

52(3):316–328.

88 BIBLIOGRAPHY

Cicmil, S., Williams, T., Thomas, J., and Hodgson, D. (2006). Rethinking pro-

ject management: researching the actuality of projects. International journal of

project management, 24(8):675–686.

Cleland, D. and Kerzner, H. (1985). A Project Management Dictionary of Terms.

Van Nostrand Reinhold.

Cleland, D. and King, W. (1983). Project Management Handbook. Van Nostrand

Reinhold Company.

Cleland, D. I. (2007). Project management: strategic design and implementation.

McGraw-Hill Education.

Coello, C. A. C., Lamont, G. B., and Veldhuizen, D. A. V. (2006). Evolution-

ary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary

Computation). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Cooke-Davies, T. J., Crawford, L. H., and Lechler, T. G. (2009). Project manage-

ment systems: Moving project management from an operational to a strategic

discipline. Project Management Journal, 40(1):110–123.

Costa Jr, P. T. and McCrae, R. R. (2008). The Revised NEO Personality Inventory

(NEO-PI-R). Sage Publications, Inc.

Cram, W. A. and Marabelli, M. (2018). Have your cake and eat it too? simultan-

eously pursuing the knowledge-sharing benefits of agile and traditional develop-

ment approaches. Information & Management, 55(3):322–339.

Crawford, B., Soto, R., Astorga, G., and Olguín, E. (2016a). An alternative solution

to the software project scheduling problem. In Artificial Intelligence Perspectives

in Intelligent Systems, pages 501–510. Springer.

Crawford, B., Soto, R., Johnson, F., Monfroy, E., and Paredes, F. (2014). A max-

min ant system algorithm to solve the software project scheduling problem. Ex-

pert Syst. Appl., 41(15):6634–6645.

Crawford, B., Soto, R., Johnson, F., Valencia, C., and Paredes, F. (2016b). Fire-

fly algorithm to solve a project scheduling problem. In Artificial Intelligence

BIBLIOGRAPHY 89

Perspectives in Intelligent Systems, pages 449–458. Springer.

Crowston, K. and Kammerer, E. E. (1998). Coordination and collective mind in

software requirements development. IBM Systems Journal, 37(2):227–245.

Cummings, J. N. and Cross, R. (2003). Structural properties of work groups and

their consequences for performance. Social Networks, 25(3):197 – 210.

da Silva, G. F., Silva, L., and Britto, A. (2020). Dynamic software project schedul-

ing problem with pso and dynamic strategies based on memory. In Brazilian

Conference on Intelligent Systems, pages 79–94. Springer.

Dalcher, D. J. (2009). Aipm book series & research at the ncpm. In PMUni confer-

ence, Vienna.

Danilovic, M. and Browning, T. R. (2007). Managing complex product develop-

ment projects with design structure matrices and domain mapping matrices. In-

ternational Journal of Project Management, 25(3):300–314.

de Andrade, J., Silva, L., Britto, A., and Amaral, R. (2019). Solving the software

project scheduling problem with hyper-heuristics. In International Conference

on Artificial Intelligence and Soft Computing, pages 399–411. Springer.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms.

Wiley Interscience Series in Systems and Optimization. Wiley.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary

computation, 6(2):182–197.

Demeulemeester, E., Vanhoucke, M., and Herroelen, W. (2003). Rangen: A ran-

dom network generator for activity-on-the-node networks. Journal of Scheduling,

6(1):17–38.

Deubzer, F., Lindemann, U., et al. (2008). Functional modelling for design synthesis

using mdm methodology. In DSM 2008: Proceedings of the 10th International

DSM Conference, Stockholm, Sweden, 11.-12.11. 2008, pages 403–411.

90 BIBLIOGRAPHY

Devaux, S. A. (1999). Total project control: A manager’s guide to integrated project

planning, measuring, and tracking. Wiley New York, NY.

Di Penta, M., Harman, M., and Antoniol, G. (2011). The use of search-based op-

timization techniques to schedule and staff software projects: an approach and an

empirical study. Software: Practice and Experience, 41(5):495–519.

Ding, R. and Jing, X. (2003). Five principles of project management in software

companies. Project Management Technology, 1.

Dingsøyr, T., Nerur, S., Balijepally, V., and Moe, N. B. (2012). A decade of agile

methodologies: Towards explaining agile software development. Journal of Sys-

tems and Software, 85(6):1213 – 1221. Special Issue: Agile Development.

Driskell, T., Driskell, J. E., Burke, C. S., and Salas, E. (2017). Team roles: A review

and integration. Small Group Research, 48(4):482–511.

Duggan, J., Byrne, J., and Lyons, G. J. (2004). A task allocation optimizer for

software construction. IEEE software, 21(3):76–82.

Dupuy, G., Stark, N., and Salto, C. (2013). Algoritmo evolutivo para el problema

de planificación en proyectos de desarrollo de software. In XVIII Congreso Ar-

gentino de Ciencias de la Computación.

Dwyer, J., Stanton, P., and Thiessen, V. (2004). Why project management. Project

management in health and community services: getting good ideas to work, pages

3–22.

Dybå, T. and Dingsøyr, T. (2008). Empirical studies of agile software development:

A systematic review. Information and software technology, 50(9-10):833–859.

Dzvonyar, D., Alperowitz, L., Henze, D., and Bruegge, B. (2018). Team compos-

ition in software engineering project courses. In 2018 IEEE/ACM International

Workshop on Software Engineering Education for Millennials (SEEM), pages

16–23. IEEE.

Espinosa, J. A., Slaughter, S. A., Kraut, R. E., and Herbsleb, J. D. (2007). Famili-

arity, complexity, and team performance in geographically distributed software

BIBLIOGRAPHY 91

development. Organization science, 18(4):613–630.

Fahmy, A. M. (2016). Optimization algorithms in project scheduling||. Optimization

Algorithms-Methods and Applications.

Fernandes, F. L. M., S. F. Q. B. d. (2007). Relationship between personal compet-

ences and project management personality types (in portuguese). In Proceedings

of the 2º Congresso Brasileiro de Gerenciamento de Projetos. Salvador, Bahia.

Fernandez-Viagas, V. and Framinan, J. M. (2014). Integrated project scheduling

and staff assignment with controllable processing times. The Scientific World

Journal, 2014.

Fowler, M., Highsmith, J., et al. (2001). The agile manifesto. Software Develop-

ment, 9(8):28–35.

Furnham, A. (1990). The fakeability of the 16 pf, myers-briggs and firo-b person-

ality measures. Personality and Individual Differences, 11(7):711–716.

Furnham, A. (1996). The firo-b, the learning style questionnaire, and the five-factor

model. Journal of Social Behavior and Personality, 11(2):285.

García-Nájera, A. and del Carmen Gómez-Fuentes, M. (2014). A multi-objective

genetic algorithm for the software project scheduling problem. In Mexican Inter-

national Conference on Artificial Intelligence, pages 13–24. Springer.

Goldberg, L. R. (2013). An alternative “description of personality”: The big-five

factor structure. Personality and Personality Disorders: The Science of Mental

Health, 7:34.

Gonsalves, T. and Itoh, K. (2010). Multi-objective optimization for software de-

velopment projects. In Lecture Notes in Engineering and Computer Science:

International Multiconference of Engineers and Computer Scientist 2010, pages

1–6.

Gorbea, C., Spielmannleitner, T., Lindemann, U., and Fricke, E. (2008). Analysis

of hybrid vehicle architectures using multiple domain matrices. In DSM 2008:

92 BIBLIOGRAPHY

Proceedings of the 10th International DSM Conference, Stockholm, Sweden, 11.-

12.11. 2008.

Görög, M. (1999). Bevezetés a projektmenedzsmentbe. Aula Kiadó, Budapest.

Görög, M. (2003). A projektvezetés mestersége. Aula.

Görög, M. (2007). Általános projektmenedzsment. Aula Kiadó, Budapest.

Görög, M. and Ternyik, L. (2001). Informatikai projektek vezetése. Kossuth.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Kan, A. R. (1979). Optimiza-

tion and approximation in deterministic sequencing and scheduling: a survey. In

Annals of discrete mathematics, volume 5, pages 287–326. Elsevier.

Gueorguiev, S., Harman, M., and Antoniol, G. (2009). Software project planning

for robustness and completion time in the presence of uncertainty using multi

objective search based software engineering. In Proceedings of the 11th Annual

conference on Genetic and evolutionary computation, pages 1673–1680.

Gunawan, I. and Ahsan, K. (2010). Project scheduling improvement using design

structure matrix. International Journal of Project Organisation and Manage-

ment, 2(4):311–327.

Guo, Y., Ji, J., Ji, J., Gong, D., Cheng, J., and Shen, X. (2019). Firework-based

software project scheduling method considering the learning and forgetting ef-

fect. Soft computing, 23(13):5019–5034.

Hanne, T. and Nickel, S. (2005). A multiobjective evolutionary algorithm for

scheduling and inspection planning in software development projects. European

Journal of Operational Research, 167(3):663–678.

Harta, P. (2021). Agilis projektcsapat optimális kiválasztásának vizsgálata szoftver

projekt környezetben. In XXXV. Országos Tudományos Diákköri Konferencia

Közgazdaságtudományi Szekció.

Hartmann, S. and Briskorn, D. (2010). A survey of variants and extensions of the

resource-constrained project scheduling problem. European Journal of opera-

tional research, 207(1):1–14.

BIBLIOGRAPHY 93

Henry, S. M. and Stevens, K. T. (1999). Using belbin’s leadership role to improve

team effectiveness: An empirical investigation. Journal of Systems and Software,

44(3):241–250.

Hinde, D. (2018). PRINCE2 Study Guide: 2017 Update, Second Edition. Sybex.

Hogan, R., Raza, S., and Driskell, J. E. (1988). Personality, Team Performance, and

Organizational Context, pages 93–103. Springer US, Boston, MA.

Hong, P., Doll, W. J., Nahm, A. Y., and Li, X. (2004). Knowledge sharing in

integrated product development. European journal of innovation management.

Hoopes, D. G. and Postrel, S. (1999). Shared knowledge,“glitches,” and product

development performance. Strategic management journal, 20(9):837–865.

Hsu, S.-C., Weng, K.-W., Cui, Q., and Rand, W. (2016). Understanding the com-

plexity of project team member selection through agent-based modeling. Inter-

national Journal of Project Management, 34(1):82 – 93.

Hunter, J. E., Schmidt, F. L., and Judiesch, M. K. (1990). Individual differences in

output variability as a function of job complexity. Journal of Applied Psychology,

75(1):28–42.

Icmeli, O., Erenguc, S. S., and Zappe, C. J. (1993). Project scheduling problems: a

survey. International Journal of Operations & Production Management.

Iivari, J., Hirschheim, R., and Klein, H. K. (2000). A dynamic framework for classi-

fying information systems development methodologies and approaches. Journal

of management information systems, 17(3):179–218.

Institute, P. (2017). A Guide to the Project Management Body of Knowledge (PM-

BOK® Guide)–Sixth Edition. PMBOK® Guide. Project Management Institute.

Institute, P. M. (2011). Practice standard for scheduling. Project Management

Institute.

Institute, P. M. (2012). Pmi lexicon of project management terms. Project Manage-

ment Institute.

94 BIBLIOGRAPHY

Introna, L. D. and Whitley, E. A. (1997). Against method-ism. Information Tech-

nology & People.

Iriarte, C. and Bayona, S. (2020). It projects success factors: a literature review.

SciKA-Association for Promotion and Dissemination of Scientific Knowledge.

Islam, M. R., Islam, M. S., and Sakeef, N. (2019). Rna secondary structure

prediction with pseudoknots using chemical reaction optimization algorithm.

IEEE/ACM Transactions on Computational Biology and Bioinformatics.

Jalote, P. and Vishal, B. (2003). Optimal resource allocation for the quality control

process. In 14th International Symposium on Software Reliability Engineering,

2003. ISSRE 2003., pages 26–33. IEEE.

Jamieson, A. and Morris, P. W. (2007). Moving from corporate strategy to project

strategy. In The Wiley Guide to Project, Program, and Portfolio Management,

volume 3, pages 34–62. John Wiley & Sons Hoboken, NJ.

Jin, N. and Yao, X. (2014). Heuristic optimization for software project manage-

ment with impacts of team efficiency. In 2014 IEEE Congress on Evolutionary

Computation (CEC), pages 3016–3023. IEEE.

Källo, R., Eerme, M., and Reedik, V. (2013). Ways of increasing synergy in auto-

mated factory design and commissioning teamwork. Journal of Materials Sci-

ence and Engineering. B, 3(9B):597.

Karabeleski, S. and Avdic, D. (2018). Pairing belbin’s team roles towards pro-

ductivity.

Klein, R. (2012). Scheduling of resource-constrained projects, volume 10. Springer

Science & Business Media.

Klimoski, R. and Jones, R. G. (1995). Staffing for effective group decision mak-

ing: Key issues in matching people and teams. Team effectiveness and decision

making in organizations, 29:1–332.

Knowles, J. D. and Corne, D. W. (2000). Approximating the nondominated front

using the pareto archived evolution strategy. Evol. Comput., 8(2):149–172.

BIBLIOGRAPHY 95

Kolisch, R. and Sprecher, A. (1997). {PSPLIB} - a project scheduling problem

library: {OR} software - {ORSEP} operations research software exchange pro-

gram. European Journal of Operational Research, 96(1):205 – 216.

Konak, A., Kulturel-Konak, S., and Cheung, G. W. (2019). Teamwork attitudes,

interest and self-efficacy between online and face-to-face information technology

students. Team Performance Management: An International Journal.

Kosztyán, Z. T. (2015). Exact algorithm for matrix-based project planning prob-

lems. Expert Systems with Applications, 42(9):4460 – 4473.

Kosztyán, Z. T. (2020). An exact algorithm for the flexible multilevel project

scheduling problem. Expert Systems with Applications, 158:113485.

Kosztyán, Z. T., Fejes, J., and Judit, K. (2008). Sztohisztikus hálóstruktúrák

kezelése projektütemezési feladatokban. SZIGMA Matematikai-közgazdasági

folyóirat, 39(1-2):87–105.

Kosztyán, Z. T., Jakab, R., Novák, G., and Hegedűs, C. (2020). Survive it! survival

analysis of it project planning approaches. Operations Research Perspectives,

7:100170.

Kosztyán, Z. T. and Kiss, J. (2010). Stochastic network planning method. In Ad-

vanced techniques in computing sciences and software engineering, pages 263–

268. Springer.

Kosztyán, Z. T., Kiss, J., et al. (2010). Pem–a new matrix method for supporting the

logic planning ofsoftware development projects. In DSM 2010: Proceedings of

the 12th International DSM Conference, Cambridge, UK, 22.-23.07. 2010, pages

97–110.

Kosztyán, Z. T. and Kurbucz, M. T. (2015). Projektek nyomon követése mátrix-

okkal= comprehensive planning and coordinating matrix. Taylor, 7(1-2):144–

151.

96 BIBLIOGRAPHY

Kosztyán, Z. T., Pribojszki-Németh, A., and Szalkai, I. (2019). Hybrid multimode

resource-constrained maintenance project scheduling problem. Operations Re-

search Perspectives, 6:100129.

Kosztyán, Z. T. and Szalkai, I. (2018). Hybrid time-quality-cost trade-off problems.

Operations Research Perspectives, 5:306–318.

Kosztyán, Z. T. and Szalkai, I. (2020). Multimode resource-constrained project

scheduling in flexible projects. Journal of Global Optimization, 76(1):211–241.

Kumar, A. and Ganesh, L. (1998). Use of petri nets for resource allocation in

projects. IEEE Transactions on Engineering Management, 45(1):49–56.

Kumar, R. L. (2002). Managing risks in it projects: an options perspective. Inform-

ation & management, 40(1):63–74.

Kurbucz, M. T. (2013). Emberi erőforrások optimális kiválasztásának vizsgálata a

projekttervezésben. E-CONOM, 2(2):58–78.

Kurbucz, M. T. (2016). Projektek átfogó tervezésének és koordinálásának támog-

atása mátrixokkal= comprehensive planning and coordinating by matrix-based

methods. E-CONOM, 5(1):148–160.

Laszczyk, M. and Myszkowski, P. B. (2019). Improved selection in evolu-

tionary multi–objective optimization of multi–skill resource–constrained project

scheduling problem. Information Sciences, 481:412–431.

Lederer, A. L. and Prasad, J. (1993). Information systems software cost estimating:

a current assessment. Journal of information technology, 8(1):22–33.

Lewis James, P. (1997). Fundamentals of project management. American Manage-

ment Association.

Leybourne, S. A. (2007). The changing bias of project management research: a

consideration of the literatures and an application of extant theory. Project Man-

agement Journal, 38(1):61–73.

Li, H., Guo, Q.-L., Wang, Q., and Xi, L.-F. (2015). Algorithms to test open set

condition for self-similar set related to pv numbers. Journal of Mathematical

BIBLIOGRAPHY 97

Analysis and Applications, 421(1):453–473.

Liemhetcharat, S. and Veloso, M. (2012). Modeling and learning synergy for

team formation with heterogeneous agents. In Proceedings of the 11th Inter-

national Conference on Autonomous Agents and Multiagent Systems-Volume 1,

pages 365–374.

Liemhetcharat, S. and Veloso, M. (2014). Weighted synergy graphs for effective

team formation with heterogeneous ad hoc agents. Artificial Intelligence, 208:41–

65.

Lindsjørn, Y., Sjøberg, D. I., Dingsøyr, T., Bergersen, G. R., and Dybå, T. (2016).

Teamwork quality and project success in software development: A survey of

agile development teams. Journal of Systems and Software, 122:274–286.

Luna, F., González-Álvarez, D. L., Chicano, F., and Vega-Rodríguez, M. A. (2011).

On the scalability of multi-objective metaheuristics for the software scheduling

problem. In 2011 11th International Conference on Intelligent Systems Design

and Applications, pages 1110–1115. IEEE.

Luna, F., González-Álvarez, D. L., Chicano, F., and Vega-Rodríguez, M. A.

(2014). The software project scheduling problem: A scalability analysis of multi-

objective metaheuristics. Appl. Soft Comput., 15:136–148.

Maheswari, J. U. and Varghese, K. (2005). Project scheduling using dependency

structure matrix. International Journal of Project Management, 23(3):223–230.

Mateo, J. R. S. C. (2016). Management Science, Operations Research and Project

Management: Modelling, Evaluation, Scheduling, Monitoring. Routledge.

MathWorks (2019a). Predictor importance. URL: https://www.mathworks.com/

help/stats/compactregressionensemble.predictorimportance.html. [Accessed: 25

August 2020].

MathWorks (2019b). Regression learner app. URL: https://www.mathworks.com/

help/stats/regression-learner-app.html. [Accessed: 25 August 2020].

https://www.mathworks.com/help/stats/compactregressionensemble.predictorimportance.html
https://www.mathworks.com/help/stats/compactregressionensemble.predictorimportance.html
https://www.mathworks.com/help/stats/regression-learner-app.html
https://www.mathworks.com/help/stats/regression-learner-app.html

98 BIBLIOGRAPHY

Mears, P. and Voehl, F. (1994). Team building: a structured learning approach.

CRC Press.

Mehler, M. (1991). Reining in runaway systems. Information Week, pages 20–24.

Melo, F. S. and Sardinha, A. (2016). Ad hoc teamwork by learning teammates’

task. Autonomous Agents and Multi-Agent Systems, 30(2):175–219.

Minku, L. L., Sudholt, D., and Yao, X. (2012). Evolutionary algorithms for the pro-

ject scheduling problem: runtime analysis and improved design. In Proceedings

of the 14th annual conference on Genetic and evolutionary computation, pages

1221–1228.

Minku, L. L., Sudholt, D., and Yao, X. (2013). Improved evolutionary algorithm

design for the project scheduling problem based on runtime analysis. IEEE Trans-

actions on Software Engineering, 40(1):83–102.

Mohammadi, M., Sajadi, S. M., and Tavakoli, M. M. (2014). Scheduling new

product development projects using simulation-based dependency structure mat-

rix. International Journal of Logistics Systems and Management, 19(3):311–328.

Moos, R. H. and Speisman, J. C. (1962). Group compatibility and productivity. The

Journal of Abnormal and Social Psychology, 65(3):190.

Moreno, J. L. (1960). The Sociometry Reader. Glencoe, Illinois: The Free Press.

Mote, J. E. (2005). R&d ecology: using 2-mode network analysis to explore com-

plexity in r&d environments. Journal of Engineering and Technology Manage-

ment, 22(1):93 – 111. Research on Social Networks and the Organization of

Research and Development.

Mubarak, S. (2019). Construction Project Scheduling and Control. Wiley.

Muchinsky, P. (2006). Psychology Applied to Work: An Introduction to Industrial

and Organizational Psychology. Thomson/Wadsworth.

Musiał, K., Kazienko, P., and Brodka, P. (2009). User position measures in social

networks. In Proceedings of the 3rd workshop on social network mining and

analysis, pages 1–9.

BIBLIOGRAPHY 99

Myszkowski, P. B., Laszczyk, M., and Lichodij, J. (2017). Efficient selection op-

erators in nsga-ii for solving bi-objective multi-skill resource-constrained project

scheduling problem. In 2017 Federated Conference on Computer Science and

Information Systems (FedCSIS), pages 83–86. IEEE.

Myszkowski, P. B., Laszczyk, M., Nikulin, I., and Skowroński, M. (2019). Imopse:

a library for bicriteria optimization in multi-skill resource-constrained project

scheduling problem. Soft Computing, 23(10):3397–3410.

Myszkowski, P. B., Skowroński, M. E., Olech, Ł. P., and Oślizło, K. (2015a). Hy-

brid ant colony optimization in solving multi-skill resource-constrained project

scheduling problem. Soft Computing, 19(12):3599–3619.

Myszkowski, P. B., Skowroński, M. E., and Sikora, K. (2015b). A new benchmark

dataset for multi-skill resource-constrained project scheduling problem. In 2015

Federated Conference on Computer Science and Information Systems (FedCSIS),

pages 129–138. IEEE.

Nan, N. and Harter, D. E. (2009). Impact of budget and schedule pressure on soft-

ware development cycle time and effort. IEEE Transactions on Software Engin-

eering, 35(5):624–637.

Nebro, A. J., Durillo, J. J., Luna, F., Dorronsoro, B., and Alba, E. (2007). Design

issues in a multiobjective cellular genetic algorithm. In International Conference

on Evolutionary Multi-Criterion Optimization, pages 126–140. Springer.

Nerur, S., Mahapatra, R., and Mangalaraj, G. (2005). Challenges of migrating to

agile methodologies. Commun. ACM, 48(5):72–78.

Neuman, G. A. and Wright, J. (1999). Team effectiveness: beyond skills and cog-

nitive ability. Journal of Applied psychology, 84(3):376.

Ngo-The, A. and Ruhe, G. (2008). Optimized resource allocation for software

release planning. IEEE Transactions on Software Engineering, 35(1):109–123.

Özdamar, L. and Ulusoy, G. (1995). A survey on the resource-constrained project

scheduling problem. IIE transactions, 27(5):574–586.

100 BIBLIOGRAPHY

Pecora, F. and Cesta, A. (2002). Planning and scheduling ingredients for a multi-

agent system. In Proceedings of UK PLANSIG02 Workshop, Delft, The Nether-

lands, volume 371.

Peteghem, V. V. and Vanhoucke, M. (2014). An experimental investigation of me-

taheuristics for the multi-mode resource-constrained project scheduling problem

on new dataset instances. European Journal of Operational Research, 235(1):62

– 72.

Phillips, J. and Education, M.-H. (2018). PMP®: Project Management Professional

Study Guide. McGraw Hill.

Pinto, J. K. and Prescott, J. E. (1988). Variations in critical success factors over the

stages in the project life cycle. Journal of management, 14(1):5–18.

Pritsker, A. A. B., Waiters, L. J., and Wolfe, P. M. (1969). Multiproject schedul-

ing with limited resources: A zero-one programming approach. Management

science, 16(1):93–108.

Raluca, Z. (2012). A conceptual framework for team social capital as basis for

organizational team synergy. Annals of the University Dunarea de Jos of Galati:

Fascicle: I, Economics & Applied Informatics, 18(2).

Ratajczak-Ropel, E. and Skakovski, A. (2018). Population-Based Approaches to

the Resource-Constrained and Discrete-Continuous Scheduling. Springer.

Ren, M., Ren, L., and Jain, H. (2018). Manufacturing service composition model

based on synergy effect: a social network analysis approach. Applied Soft Com-

puting, 70:288–300.

Rezende, A. V., Silva, L., Britto, A., and Amaral, R. (2019). Software project

scheduling problem in the context of search-based software engineering: A sys-

tematic review. Journal of Systems and Software, 155:43–56.

Rodríguez, D., Ruiz, M., Riquelme, J. C., and Harrison, R. (2011). Multiobjective

simulation optimisation in software project management. In Proceedings of the

BIBLIOGRAPHY 101

13th annual conference on Genetic and evolutionary computation, pages 1883–

1890.

Rodriguez-Repiso, L., Setchi, R., and Salmeron, J. L. (2007). Modelling it projects

success: Emerging methodologies reviewed. Technovation, 27(10):582–594.

Ruiz, M. and Fuentes, G. (2017). Applying extreme engineering and personal-

ity factors to improve software development under a heavyweight methodology.

In International Conference on Product-Focused Software Process Improvement,

pages 470–481. Springer.

Salas, E. and Burke, C. (2002). Simulation for training is effective when. . . . BMJ

Quality & Safety, 11(2):119–120.

Sanchez, O. P., Terlizzi, M. A., et al. (2017). Cost and time project management suc-

cess factors for information systems development projects. International Journal

of Project Management, 35(8):1608–1626.

Sarbin, T. R. (1954). Role theory’in lindzey, g.(ed.) handbook of social psychology.

Reading, Mass., G. Addison-Wesley.

Saxena, A. and Iyengar, S. (2020). Centrality measures in complex networks: A

survey. arXiv preprint arXiv:2011.07190.

Schmitt, N., Gooding, R. Z., Noe, R. A., and Kirsch, M. (1984). Metaanalyses of

validity studies published between 1964 and 1982 and the investigation of study

characteristics. Personnel Psychology, 37(3):407–422.

Schneider, B. and Smith, D. B. (2004). Personality and organizations. Psychology

Press.

Schoenhoff, P. K. (2001). Belbin’s Company Worker, The Self-Perception Inventory,

and Their Application to Software Engineering Teams. PhD thesis, Virginia Tech.

Scholtes, I., Mavrodiev, P., and Schweitzer, F. (2016). From aristotle to ringelmann:

a large-scale analysis of team productivity and coordination in open source soft-

ware projects. Empirical Software Engineering, 21(2):642–683.

102 BIBLIOGRAPHY

Schutz, W. (1992). Beyond firo-b—three new theory-derived measures—element b:

Behavior, element f: Feelings, element s: Self. Psychological reports, 70(3):915–

937.

Schutz, W. C. (1955). What makes groups productive? Human Relations, 8(4):429–

465.

Schutz, W. C. (1959). Firo, a three-dimensional theory of interpersonal behavior.

Journal of Symbolic Logic, 24(3):216–217.

Schwab, A. and Miner, A. S. (2008). Learning in hybrid-project systems: The ef-

fects of project performance on repeated collaboration. Academy of Management

Journal, 51(6):1117–1149.

Schwindt, C., Zimmermann, J., et al. (2015). Handbook on project management

and scheduling vol. 2. Springer.

SGI (2019). Chaos manifesto. Standish Group International.

Shaw, M. E. (1964). Communication networks. In Advances in experimental social

psychology, volume 1, pages 111–147. Elsevier.

Shaw, M. E. and Webb, J. N. (1982). When compatibility interferes with group

effectiveness: Facilitation of learning in small groups. Small Group Behavior,

13(4):555–564.

Sheard, S., Cook, S., Honour, E., Hybertson, D., Krupa, J., McEver, J., McKinney,

D., Ondrus, P., Ryan, A., Scheurer, R., et al. (2015). A complexity primer for

systems engineers. INCOSE Complex Systems Working Group White Paper, 1:1–

10.

Shen, X., Minku, L. L., Bahsoon, R., and Yao, X. (2015). Dynamic software pro-

ject scheduling through a proactive-rescheduling method. IEEE Transactions on

Software Engineering, 42(7):658–686.

Shen, X.-N., Minku, L. L., Marturi, N., Guo, Y.-N., and Han, Y. (2018). A q-

learning-based memetic algorithm for multi-objective dynamic software project

scheduling. Information Sciences, 428:1–29.

BIBLIOGRAPHY 103

Shenhar, A. and Dvir, D. (2007). Reinventing Project Management: The Diamond

Approach To Successful Growth And Innovation. Harvard Business Review Press.

Shenhar, A. J. (2001). One size does not fit all projects: Exploring classical contin-

gency domains. Management science, 47(3):394–414.

Shi, Q. and Blomquist, T. (2012). A new approach for project scheduling using

fuzzy dependency structure matrix. International Journal of Project Manage-

ment, 30(4):503–510.

Simeunovic, A. and Landelius, T. (2017). Belbin’s team roles in agile software

development.

Smith-Jentsch, K. A., Salas, E., and Baker, D. P. (1996). Training team

performance-related assertiveness. Personnel Psychology, 49(4):909–936.

Sorenson, J. R. (1971). Task demands, group interaction and group performance.

Sociometry, 34(4):483–495.

Sparrowe, R. T., Liden, R. C., Wayne, S. J., and Kraimer, M. L. (2001). Social net-

works and the performance of individuals and groups. Academy of Management

Journal, 44(2):316–325.

Špundak, M. (2014). Mixed agile/traditional project management methodology–

reality or illusion? Procedia-Social and Behavioral Sciences, 119:939–948.

Sridharan, S. and Balakrishnan, R. (2019). Discrete Mathematics: Graph Al-

gorithms, Algebraic Structures, Coding Theory, and Cryptography. CRC Press.

Stevens, K. and Henry, S. (2002). Analysing software teams using belbin’s innov-

ative plant role. Department of Computer and Information Science, University of

Mississippi and Department of Computer Science, Virginia Tech.

Stevens, M. J. and Campion, M. A. (1999). Staffing work teams: Development

and validation of a selection test for teamwork settings. Journal of Management,

25(2):207–228.

Steward, D. V. (1981). Systems analysis and management: structure, strategy, and

design. Petrocelli books.

104 BIBLIOGRAPHY

Suri, B. and Jajoria, P. (2013). Using ant colony optimization in software develop-

ment project scheduling. In 2013 International Conference on Advances in Com-

puting, Communications and Informatics (ICACCI), pages 2101–2106. IEEE.

Tannenbaum, S. I., Beard, R. L., and Salas, E. (1992). Team building and its influ-

ence on team effectiveness: An examination of conceptual and empirical devel-

opments. In Advances in psychology, volume 82, pages 117–153. Elsevier.

Tavares, L. V., Ferreira, J. A., and Coelho, J. S. (1999). The risk of delay of a project

in terms of the morphology of its network. European Journal of Operational

Research, 119(2):510 – 537.

Thomas, R. N. (1999). Group dynamics and software engineering. In Object

Oriented Programming Systems Languages and Applications: Educators’ Sym-

posium.

Tirkolaee, E. B., Goli, A., Hematian, M., Sangaiah, A. K., and Han, T. (2019).

Multi-objective multi-mode resource constrained project scheduling problem us-

ing pareto-based algorithms. Computing, 101(6):547–570.

Toljaga-Nikolic, D., Petrovic, D., and Mihic, M. (2017). How to choose the ap-

propriate project management approach? In 2017 12th International Scientific

and Technical Conference on Computer Sciences and Information Technologies

(CSIT), volume 2, pages 1–5. IEEE.

Turner, J. (2009). The Handbook of Project-based Management: Leading Strategic

Change in Organizations. McGraw-Hill’s AccessEngineering. McGraw-Hill.

Vanhoucke, M. (2012). Measuring the efficiency of project control using ficti-

tious and empirical project data. International Journal of Project Management,

30(2):252 – 263.

Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., and Tavares, L. V. (2008).

An evaluation of the adequacy of project network generators with systematically

sampled networks. European Journal of Operational Research, 187(2):511 –

524.

BIBLIOGRAPHY 105

Vega-Velázquez, M. Á., García-Nájera, A., and Cervantes, H. (2018). A survey on

the software project scheduling problem. International Journal of Production

Economics, 202:145–161.

Vidal, L.-A., Marle, F., and Bocquet, J.-C. (2011). Measuring project complexity

using the analytic hierarchy process. International Journal of Project Manage-

ment, 29(6):718–727.

Wang, L. and Zheng, X.-l. (2018). A knowledge-guided multi-objective fruit fly

optimization algorithm for the multi-skill resource constrained project scheduling

problem. Swarm and Evolutionary Computation, 38:54–63.

Węglarz, J., Józefowska, J., Mika, M., and Waligóra, G. (2011). Project scheduling

with finite or infinite number of activity processing modes–a survey. European

Journal of operational research, 208(3):177–205.

Wena, F. and Lin, C.-M. (2008). Multistage human resource allocation for software

development by multiobjective genetic algorithm. The Open Applied Mathemat-

ics Journal, 2(1).

Wu, C., Wang, X., and Lin, J. (2014). Optimizations in project scheduling: A state-

of-art survey. In Optimization and control methods in industrial engineering and

construction, pages 161–177. Springer.

Wu, L., Waber, B. N., Aral, S., Brynjolfsson, E., and Pentland, A. (2008). Min-

ing face-to-face interaction networks using sociometric badges: Predicting pro-

ductivity in an it configuration task. Available at SSRN 1130251.

Wu, X., Consoli, P., Minku, L., Ochoa, G., and Yao, X. (2016). An evolutionary

hyper-heuristic for the software project scheduling problem. In International

Conference on Parallel Problem Solving from Nature, pages 37–47. Springer.

Wysocki, R. K. (2011). Effective project management: traditional, agile, extreme.

John Wiley & Sons.

Wysocki, R. K. (2019). Effective project management: traditional, agile, extreme,

hybrid. John Wiley & Sons.

106 BIBLIOGRAPHY

Xiao, J., Ao, X.-T., and Tang, Y. (2013). Solving software project scheduling prob-

lems with ant colony optimization. Comput. Oper. Res., 40(1):33–46.

Xiao, J., Gao, M.-L., and Huang, M.-M. (2015). Empirical study of multi-objective

ant colony optimization to software project scheduling problems. In Proceedings

of the 2015 Annual Conference on Genetic and Evolutionary Computation, pages

759–766.

Yang, H.-L. and Tang, J.-H. (2004). Team structure and team performance in

is development: a social network perspective. Information & management,

41(3):335–349.

Yang, X.-S. (2010). Engineering optimization: an introduction with metaheuristic

applications. John Wiley & Sons.

Yilmaz, M., O’Connor, R. V., Colomo-Palacios, R., and Clarke, P. (2017). An

examination of personality traits and how they impact on software development

teams. Information and Software Technology, 86:101–122.

Yoshimura, M., Fujimi, Y., Izui, K., and Nishiwaki, S. (2006). Decision-making

support system for human resource allocation in product development projects.

International journal of production research, 44(5):831–848.

Young, K. D., Feydy, T., and Schutt, A. (2017). Constraint programming applied

to the multi-skill project scheduling problem. In International Conference on

Principles and Practice of Constraint Programming, pages 308–317. Springer.

Zitzler, E., Laumanns, M., and Thiele, L. (2001). Spea2: Improving the strength

pareto evolutionary algorithm. TIK-report, 103.

Zorrilla, M. and de Lima Silva, M. (2019). Sociograms: An effective tool for

decision making in social learning. Technology, Knowledge and Learning,

24(4):659–681.

107

Appendix

A.1 Correlation of Independent Variables

TABLE A.1. Kendall rank correlation of independent variables

(Source: own table)

Variable (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(1) Nsk 1.00
(2) AvgSyn 0.00 1.00
(3) Ct% 0.00 0.00 1.00
(4) Cc% 0.00 0.00 0.00 1.00
(5) Cs% 0.00 0.00 0.00 0.00 1.00
(6) ff 0.00 0.00 0.00 0.00 0.00 1.00
(7) Na 0.92 0.00 0.00 0.00 0.00 0.00 1.00
(8) DC -0.52 0.00 0.00 0.00 0.00 0.00 -0.52 1.00
(9) CC -0.37 0.00 0.00 0.00 0.00 0.00 -0.37 0.87 1.00
(10) BC -0.20 0.00 0.00 0.00 0.00 0.00 -0.20 -0.44 -0.73 1.00
(11) PP -0.37 0.00 0.00 0.00 0.00 0.00 -0.37 0.87 1.00 -0.73 1.00

A.2 Predictor Importance in Additional Model

FIGURE A.1. Relative importance of various predictors (additional model)
(Source: own figure)

Remark: dependent variables are related to time.

108 APPENDIX

A.3 Electronic Supplementary Material

The Electronic Supplementary Material is available at https://github.com/IHFSPP/
Electronic_Supplementary_Material.git. It contains the following files:

(1) Calculations for Fig. 12 (fig10_calc.m): Calculations used for preparing
Fig. 12.

(2) Workspace for Fig. 12 (fig10_workspace.mat): Workspace of calcula-
tions used for preparing Fig. 12.

(3) Calculations for Fig. A.1 (figa1_calc.m): Calculations used for preparing
Fig. A.1.

(4) Workspace for Fig. A.1 (figa1_workspace.mat): Workspace of calcula-
tions used for preparing Fig. A.1.

https://github.com/IHFSPP/Electronic_Supplementary_Material.git
https://github.com/IHFSPP/Electronic_Supplementary_Material.git

	Abstract
	Resumen
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgments
	Chapter 1. Introduction
	1.1. Motivation of the Thesis
	1.2. Research Questions
	1.3. Structure of the Thesis

	Chapter 2. Related Studies
	2.1. Project and Project Management
	2.1.1. Basic Definitions
	2.1.2. Project Life Cycle
	2.1.3. Triple Constraint of Project Management
	2.1.4. Types of Projects
	2.1.5. Project Management Approaches

	2.2. Project Planning Problems and Techniques
	2.2.1. Project Scheduling Problem
	2.2.2. Human Resource Allocation Problem
	2.2.3. Matrix-Based Flexible Planning

	2.3. Software Project Scheduling Problem
	2.3.1. Reference Model
	2.3.2. Structure
	2.3.3. Objective
	2.3.4. Optimization

	2.4. Project Team Composition and Effectiveness
	2.4.1. Individual Characteristics Approach
	2.4.2. Jigsaw Puzzle Approach

	2.5. Sociometry and Synergy Networks
	2.6. Research Assumptions

	Chapter 3. Methods
	3.1. Formal Description of the (S)SPSP
	3.1.1. Notation
	3.1.2. Formalism Related to Project Duration
	3.1.3. Formalism Related to the Project Cost
	3.1.4. Constraints
	3.1.5. Objective Function
	3.1.6. Summary of Notations

	3.2. Proposed Hybrid Genetic Algorithm
	3.2.1. Parameters of the SynAPS

	3.3. Proposed Simulation Framework
	3.3.1. Specifying Problem Sets
	3.3.2. Solving Problems

	Chapter 4. Results and Discussion
	4.1. Answering the Research Questions
	4.2. Research Theses

	Chapter 5. Practical example
	5.1. Problem Definition
	5.2. Specification of the SMM
	5.3. Results

	Chapter 6. Threats to Validity
	Chapter 7. Summary and Conclusion
	7.1. Summary
	7.2. Conclusion
	7.2.1. Contribution to the Literature
	7.2.2. Practical Implications

	Chapter 8. Limitations and Future Research
	Bibliography
	Appendix
	Appendix
	A.1 Correlation of Independent Variables
	A.1 Correlation of Independent Variables

	A.2 Predictor Importance in Additional Model
	A.2 Predictor Importance in Additional Model

	A.3 Electronic Supplementary Material
	A.3 Electronic Supplementary Material

